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Abstract
Mounting evidence has accumulated on the critical role of the different myeloid cells in the regulation of the cancerous 
process, and in particular in the modulation of the immune reaction to cancer. Myeloid cells are a major component of host 
cells infiltrating tumors, interacting with each other, with tumor cells and other stromal cells, and demonstrating a prominent 
plasticity. We describe here various myeloid regulatory cells (MRCs) in mice and human as well as their relevant therapeutic 
targets. We first address the role of the monocytes and macrophages that can contribute to angiogenesis, immunosuppression 
and metastatic dissemination. Next, we discuss the differential role of neutrophil subsets in tumor development, enhancing 
the dual and sometimes contradicting role of these cells. A heterogeneous population of immature myeloid cells, MDSCs, 
was shown to be generated and accumulated during tumor progression as well as to be an important player in cancer-related 
immune suppression. Lastly, we discuss the role of myeloid DCs, which can either contribute to effective anti-tumor responses 
or play a more regulatory role. We believe that MRCs play a critical role in cancer-related immune regulation and suggest 
that future anti-cancer therapies will focus on these abundant cells.
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Abbreviations
Arg	� Arginase
CCL	� C–C motif ligand
cDC	� Classical dendritic cell
CXCL	� C–X–C motif ligand
DCs	� Dendritic cells
EBV	� Epstein–Barr virus
EGF	� Epidermal growth factor
FGF	� Fibroblast growth factor
HDNs	� High-density neutrophils
HGF	� Hepatocyte growth factor
iNOS	� Inducible NO synthase
LDNs	� Low-density neutrophils
LFA	� Lymphocyte function-associated antigen

Mac	� Macrophage antigen
M-CSF	� Macrophage colony-stimulating factor
M-MDSCs	� Monocytic MDSCs
MMPs	� Matrix metalloproteinases
MRCs	� Myeloid regulatory cells
NLR	� Neutrophil to lymphocyte ratio
PDGF	� Platelet-derived growth factor
PLGF	� Placenta growth factor
PMN-MDSCs	� Polymorphonuclear MDSCs
TAMs	� Tumor-associated macrophages
TANs	� Tumor-associated neutrophils
TGF	� Transforming growth factor

Introduction

Various investigations have presented strong data that dif-
ferent tumors were able to display immunogenic properties, 
stimulating robust anti-tumor immune responses, in which 
T cells were demonstrated to play a major role [1]. An 
increased infiltration of tumor lesions with T lymphocytes 
has been demonstrated in patients with a large spectrum of 
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tumors to correlate markedly with better clinical outcome 
[2]. However, multiple studies in the last decade have indi-
cated a critical role of myeloid cell subsets in the develop-
ment of an immunosuppressive tumor microenvironment, 
resulting in cancer progression. On the other side, some 
myeloid cell subsets could be indispensable for the induc-
tion of efficient anti-tumor immune responses. Myeloid cells 
represent a major component of host cells infiltrating tumors 
and are characterized by an extraordinary plasticity [3]. They 
may not only interact with each other, with other host cells 
(especially T lymphocytes) and tumor cells but they can also 
undergo a conversion from one subset to another. Impor-
tantly, the recruitment and enrichment of myeloid cells with 
immunosuppressive/regulatory properties designated in this 
series of reviews as myeloid regulatory cells (MRCs), at the 
tumor site was found to be stimulated by chronic inflamma-
tory conditions developing in the tumor microenvironment 
[4].

The phenotypic characterization of circulating and 
tumor-infiltrating MRCs is difficult due to the fact that 
MRC subsets could express overlapping set of markers. 
Last years were characterized by an ongoing discus-
sion regarding the relationship between neutrophils and 
polymorphonuclear MDSCs (PMN-MDSCs) or tumor-
associated macrophages (TAMs) and monocytic MDSCs 
(M-MDSCs). For example, classical neutrophils and 
PMN-MDSCs share markers [5]. Despite numerous efforts 
to determine the similarities and differences between these 
two cell populations, further studies are still needed to 
better identify their molecular identity and functional char-
acteristics. A comprehensive analysis of the phenotypic 
markers, molecular signaling pathways and functional 
capacities of various MRC subsets is presented by Cassetta 
et al. and Bruger et al. [6] in companion reviews in this 
symposium-in-writing. In the current review, we will focus 
on the characterization of various MRC subpopulations, 
including monocytes/macrophages, neutrophils, MDSCs 
and DCs, their interactions and therapeutic targeting both 
in mouse tumor models and in cancer patients (Figs. 1, 2).

Fig. 1   Multiple effects and interactions among the different types 
of MRCs in cancer. Mϕ Macrophages, M2 M2 macrophages, TAN 
tumor-associated neutrophils, N2 N2 TAN, Mo-MDSC monocytic 

myeloid-derived suppressor cells, PMN-MDSC polymorphonuclear 
MDSC, DC dendritic cells, Treg regulatory T cells
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Monocytes and macrophages

Macrophages reside in every tissue and perform, under 
homeostatic conditions, crucial housekeeping functions. 
Tissue-resident macrophages seed the organs pre-birth 
from embryonal precursors and are maintained throughout 
life with a variable contribution of monocytes depending 
on the organ [7]. Although monocytes were traditionally 
considered to comprise the main source of tissue mac-
rophages [8] it is now known that many of the tissue-
resident macrophages are of embryonic origin, derived 
either directly from progenitors of the yolk-sac or the fetal 
liver [7, 9, 10]. Monocytes appear to adopt the pheno-
type of tissue-resident macrophages if the correct niche is 
available [11]. In tumors, macrophages can be abundant 
and contribute to angiogenesis, immunosuppression and 
metastasis; therefore, their enrichment is correlated with 
a worse clinical prognosis [12].

In multiple mouse tumor models, the majority of TAMs 
were shown to derive from classical Ly6Chi monocytes and 
is continuously replaced via monocyte recruitment [13]. 
Although the spleen may be a source of monocyte precur-
sors, the largest fraction of TAM originates from the bone 
marrow [14]. However, in the spontaneous MMTV-PyMT 
and MMTV-Neu breast cancer models, the TAM pools are 
maintained through in situ proliferation of tissue-resident 
cells [15]. Moreover, tissue-resident microglia can con-
tribute to the environment of brain tumors, and embryonic 
pancreatic macrophages are crucial tumor-promoting cells 
in pancreatic ductal adenocarcinoma, besides monocyte-
derived cells [16–18]. It has been demonstrated that mono-
cytes entering the hypoxic tumor microenvironment turn into 
potent MDSCs followed by the differentiation into TAMs 
under the influence of hypoxia [19]. Importantly, hypoxia 
could determine the protumoral activity of TAMs [20], and 
preventing TAM from migrating into hypoxic areas resulted 

Fig. 2   Effects of tumor cells on MRC subsets and that of MRCs on 
T cell subpopulations in cancer. M2 M2 macrophages, N2 N2 tumor-
associated neutrophils, Mo-MDSC monocytic myeloid-derived sup-

pressor cells, PMN-MDSC polymorphonuclear MDSC, DC dendritic 
cells, Treg regulatory T cells
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in a reduced tumor growth [21]. This monocyte/MDSC-mac-
rophage differentiation in tumors and their acquisition of 
tumor-promoting functions was reported to be supported by 
macrophage colony stimulating factor (M-CSF) [22].

Many papers proposed to test the MHC class-II expres-
sion to define distinct TAM subsets (MHC-IIlo versus MHC-
IIhi) [13, 23]. In this respect, MHC-IIlo TAM resemble M2 
macrophages and are superior in suppressing T-cell activity 
and angiogenic activity, whereas MHC-IIhi TAM are more 
M1-like and more permissive to anti-tumor immunity [13, 
18]. On the other side, monocytes were shown to differenti-
ate in tumors into MHC-IIhiCD11chi (Tip)-DC that produced 
TNF and NO, captured antigens but suppress T cell func-
tions [24]. Furthermore, TAM may hamper the stimulatory 
capacity of conventional DC and T cells through IL-10 pro-
duction [23, 25].

Besides influencing primary tumor growth, macrophages 
are known to influence the dissemination of cancer cells 
to distant organs. Perivascular Tie2hi macrophages cause 
transient vascular permeability and cancer cell intravasa-
tion through the VEGF secretion [26]. Macrophages were 
shown in preclinical tumor models to contribute to metas-
tasis establishment. For example, lung metastasis of breast 
cancer cells critically depends on the recruitment of Ly6Chi 
monocytes via the chemokine (C–C motif) ligand (CCL) 
2; upon CCL2 triggering, monocytes produced CCL3, 
entrapping them at the metastatic site through interaction 
with C–C chemokine receptor (CCR) 1 [27]. Once retained 
in the lung, these metastasis-associated macrophages self-
maintain via the autocrine production of M-CSF under the 
influence of Flt1 (VEGFR1) signaling [28]. Importantly, 
macrophages contribute to the preparation of the metastatic 
niche even before cancer cells reach the target organ. Thus, 
macrophage-secreted granulin was reported to induce liver 
fibrosis, supporting pancreatic cancer metastasis to this 
organ [29]. In addition, liver-tropic metastatic cells could 
secrete exosomes that induce the acquisition of pro-meta-
static properties by liver macrophages [30].

Numerous clinical studies indicated that the expansion 
of circulating monocytes and increased macrophage num-
bers in the tumor microenvironment was adversely corre-
lated with the clinical outcomes in many human cancers 
[31–35]. It was shown that the survival of cancer stem cells 
could be supported by TAMs [36]. Furthermore, TAMs 
were shown to be involved in the reduced responsiveness 
of different cancers to standard chemotherapy [37, 38]. 
Moreover, different soluble factors secreted by TAMs in the 
tumor microenvironment such as epidermal growth factor 
(EGF), fibroblast growth factor (FGF), and transforming 
growth factor (TGF)-β, could affect the proliferation of can-
cer cells [39]. TAMs were also described to promote tumor 
growth by supporting neoangiogenesis due to their ability 
to secrete a number of angiogenic factors such as VEGF, 

platelet-derived growth factor (PDGF), placenta growth 
factor (PLGF), C–X–C motif chemokine ligand (CXCL) 
8, FGF, and matrix metalloproteinases (MMPs) [40]. The 
subpopulation of TAMs contributing to angiogenesis was 
reported to be derived from Tie-2 expressing monocytes 
that could exert tumor-supporting effects in various human 
cancers [41, 42].

On the other side, monocytes and TAMs could promote 
metastasis independently of the induction of neovasculari-
zation. It has been shown that TAMs enhance the motility 
of breast cancer [43] and hepatocellular carcinoma cells 
[44]. The release of EGF as well as MMPs, which degrade 
extracellular matrix and augment the invasiveness of tumor 
cells, were reported among the underlying mechanisms of 
the pro-metastatic effect of TAMs [27, 45]. Moreover, TAMs 
have been reported to be involved in the formation of the 
pre-metastatic niches at the site of metastases [46].

Immunosuppressive properties of TAMs and their con-
tribution to the immune escape of malignant cells are well 
documented. These cells have been reported to inhibit T 
cell activity both directly via PD-1/PD-L1 signaling [47] 
and indirectly by the upregulation of Treg functions [48]. 
Furthermore, TAMs infiltrating Hodgkin’s lymphoma pro-
moted the induction of Th17 responses or immunosuppres-
sion via the expression of TGF-β and IL-10 [49]. In addition, 
in EBV-associated nasopharyngeal carcinoma, TAMs were 
described to express the enzyme IDO, resulting in T cell 
inhibition via tryptophan depletion [50]. In addition, TAMs 
could attract other myeloid cell populations with immuno-
suppressive properties such as MDSCs that led to further 
inhibition of anti-tumor immune responses [51, 52].

Since TAMs were considered to support tumor progres-
sion, strategies aimed to target macrophage recruitment and 
monocyte–macrophage differentiation as well as to repro-
gram TAM into anti-tumoral M1-like cells were developed 
to normalize the tumor vasculature, to increase an anti-tumor 
reactivity of T cells and to exert direct anti-tumor cytotoxic 
effects [53] (Table 1).

Neutrophils

Neutrophils, the most abundant myeloid blood cells, play 
a crucial role in inflammation-driven tumorigenesis. Only 
recently, it has been recognized that neutrophils are not 
a homogeneous cell population and that their differen-
tiation and phenotype could be modulated by the tumor 
milieu, resulting in diverse phenotypic and functional states 
[54–56]. Neutrophils in tumor-bearing hosts have been 
shown to exert contradictory functional activities, leading to 
potentiation or inhibition of cancer progression. Anti-tumor 
N1 neutrophils have a hypersegmented nucleus typical for 
mature neutrophils, while pro-tumor N2 population consist 
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of cells with immature-banded nuclei [57]. It is not clear yet 
if diverse tumor-associated neutrophils (TANs) are different 
neutrophil subpopulations or rather flexible and dynamic 
cells that change their activity due to environmental cues. 
Furthermore, the differentiation between N2 TANs and 
PMN-MDSCs in the tumor is difficult due to overlapping 
phenotypic and functional properties of these closely related 
granulocytic subpopulations.

In a tumor situation, the number of circulating neu-
trophils continuously increases with tumor progression, 
possibly due to elevated emergency myelopoiesis [58]. 
It has been recently proposed that upon cancer pressure, 
extramedullary granulopoiesis occurred in the spleen that 
became a site of production and a reservoir of TANs [59]. 
Neutrophil migration into tissues and tumors is induced by 
specific chemokines (e.g., CXCL1, CXCL2 or CXCL4), 
cytokines (e.g., TNF-α and IFN-γ) and cell adhesion 
molecules [e.g., lymphocyte function associated antigen 
(LFA)-1 and macrophage (Mac)-1 antigen] [60–62]. The 
primary tumor milieu influences migratory capacities of 
neutrophils that accumulate in certain organs and form a 
pre-metastatic niche [63–65]. Neutrophils can accumulate 
in large numbers in pre-metastatic organs and release fac-
tors attracting tumor cells and facilitating their prolifera-
tion such as BV8, S100A8 and S100A9 [64]. Moreover, 
neutrophils support the seeding of tumor cells in second-
ary target organs by the release of neutrophil extracellular 

traps [66] or by the establishment of an immunosuppres-
sive environment in target organs [67]. Conversely, neu-
trophils may acquire a cytotoxic phenotype-limiting meta-
static seeding [64, 68].

Neutrophils represent a significant portion of tumor-infil-
trating myeloid cells. TANs differ significantly from their 
blood counterparts as their activation and tissue association 
seem to be strongly dependent on the tumor milieu. TANs 
were reported to exert pro- or anti-tumor effects, depend-
ing on cytokines available in the tumor microenvironment 
(e.g., TGF-β or IFNs) [64, 65, 69, 70]. TANs were shown 
to produce pro-angiogenic and proteolytic factors that sup-
port tumor angiogenesis such as VEGF or MMP9 [61]. 
They were also implicated in promoting tumor growth via 
matrix degradation, and by the stimulation of tumor cell 
proliferation, survival and metastasis [64, 65]. Furthermore, 
neutrophils were shown to recruit other cells to the tumor, 
suppressing adaptive immune responses [71, 72].

On the other hand, neutrophils were described to have 
anti-tumor properties, including the capacity to kill tumor 
cells via direct or antibody-dependent cell cytotoxicity [73, 
74] or by boosting T cell-mediated anti-tumor responses [57, 
75]. Furthermore, neutrophils could enhance the efficiency 
of some immunotherapies. They favored photodynamic ther-
apy-induced CD8 T cell activation [76], promoted T cell 
recruitment and improved the efficacy of BCG immunother-
apy of bladder cancer [77], and exerted cytotoxicity under 

Table 1   Targeting of monocytes/macrophages

Target Drug Mechanism of action Therapeutic indication

Anti-CCL2 antibody Carlumab Inhibition of recruitment and differentia-
tion of macrophages

Metastatic castration-resistant prostate 
cancer (CNTO 888)

Advanced solid tumor (NCT01204996)
CCR2 antagonist PF-04136309 Inhibition of recruitment of macrophages Pancreatic ductal adenocarcinoma 

(NCT01413022)
CCR5 antagonist Maraviroc Inhibition of recruitment of macrophages Advanced stage CRC​
Anti-CSF-1R antibody Emactuzumab (RG7155) Inhibition of differentiation and recruit-

ment macrophages
Diffuse-type tenosynovial giant-cell tumor

CSF-1R inhibitor BLZ945 Inhibition of macrophage differentiation 
and recruitment

Glioblastoma multiforme

Anti-CSF-1R antibody AFS98 Inhibition of macrophage differentiation 
and recruitment

Breast carcinoma

CSF-1R inhibitor GW2580 Inhibition of macrophage differentiation 
and recruitment

Ovarian cancer

Macrophages Clodronate in liposomes Induction of apoptosis in macrophages Breast and prostate cancer with bone 
metastasis

Anti-CD47 antibody Hu5F9-G4 Induction of apoptosis in macrophages Solid tumors
Macrophages Trabectedin Inhibition of survival and killing of 

macrophages
Ovarian cancer

TAM IFN-γ Reprogramming of TAM towards an anti-
tumor phenotype

Ovarian cancer

Anti-CD40 agonist antibody CP-870,893 Reprogramming of TAM towards an anti-
tumor phenotype

Advanced stage pancreatic cancer
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immunotherapy with tumor-specific monoclonal antibodies 
in melanoma and breast cancer [78].

Data regarding neutrophils in cancer patients are very 
scarce, and their nature and function in the tumor microen-
vironment are largely unknown. The lack of sizeable biopsy 
samples together with the poor characterization of appro-
priate functional and phenotypic markers for the myeloid 
subsets in patients are major issues to be resolved. Gene 
signatures from over 10,000 cancer biopsies demonstrated 
the presence of neutrophils in over 30 solid malignancies 
[79]. Strikingly, neutrophil signatures emerged as the most 
significant adverse cancer-wide prognostic population [79]. 
This is consistent with the growing number of studies that 
link high levels of intra-tumoral neutrophils to poor clinical 
outcome [80].

The main mechanisms of pro-tumoral functions of human 
circulating neutrophils are associated with their immunosup-
pressive and angiogenic properties [81]. The immunosup-
pressive mechanisms include production of arginase-1 (Arg-
1), reactive oxygen and nitrogen species to impair T cell 
activation and proliferation [82, 83]. Neutrophils have also 
been shown to be important sources of VEGF and MMP9 
[84].

As in mouse models, the protective effect of neutrophils 
was shown in patients undergoing therapy. For example, 
higher TAN density in colorectal cancer was associated with 
better response to 5-FU-based chemotherapy [85]. Moreo-
ver, the administration of IFN-α in chronic myeloid leukemia 
and melanoma patients stimulated the release of TRAIL by 
neutrophils, inducing apoptosis of TRAIL-sensitive cancer 
cells [86].

Circulating blood neutrophils may be separated using a 
density gradient into normal neutrophils (called high density, 
HDNs or normal density, NDNs) and low-density LDNs, co-
separated in the mononuclear fraction. Of note, there is no 
clear immunotype that fits LDNs or HDNs since they often 
share the same surface markers and functions. Nevertheless, 
LDNs are enriched for immature cells and activated neutro-
phils compared with HDN [87, 88]. Neutrophils were found 
to be accumulated in the peripheral blood of patients with 

various types of cancer, especially in advanced stages [89, 
90]. Furthermore, neutrophilia was reported to be associated 
with poor prognosis in many tumors such as bronchoalveolar 
carcinoma [91] and metastatic melanoma [89]. A high neu-
trophil to lymphocyte ratio (NLR) caused by tumor-induced 
neutrophilia and lymphocyte apoptosis is a robust marker of 
poor clinical outcome in cancer patients. The NLR has been 
validated as an independent prognostic factor in a variety of 
tumor types [92].

There is still little information on tumor-infiltrating 
neutrophils and their clinical relevance is only beginning 
to emerge. Nevertheless, TANs were demonstrated to be 
associated with poor clinical outcome in patients with renal 
cancer [93], non-small-cell lung carcinoma [94] and mela-
noma [95]. It has been reported that the enrichment of TANs 
was associated with metastases in various tumor entities and 
they were suggested to be involved in metastatic process 
[96]. Neutrophils infiltrating bronchoalveolar and cholan-
giocellular carcinoma have been shown to produce hepato-
cyte growth factor (HGF), enhancing the invasive capacity 
of cancer cells [97]. The recruitment of neutrophils within 
the tumor microenvironment relies on several chemokines, 
including but not limited to, CXCL8/IL-8, CXCL5 and mac-
rophage migration inhibitory factor [54–56, 88]. Therefore, 
most of therapeutic strategies to target neutrophils in tumor-
bearing hosts are dealing with the blocking of their migra-
tion into the tumor site (Table 2).

Myeloid‑derived suppressor cells

One of the important consequences of chronic inflamma-
tory conditions typical for the tumor microenvironment is 
the generation and accumulation of immunosuppressive 
myeloid cells designated as MDSCs [98–103]. These cells 
were shown to exert a strong capacity to inhibit anti-tumor 
functions of T and NK cells [99, 102–107]. Numerous 
studies indicated that a variety of inflammatory factors 
produced by tumor and host cells, including IFN-γ, IL-1β, 
prostaglandin E2, IL-6, IL-10, IL-13, COX-2, TGF-β, 

Table 2   Targeting of neutrophils

Target Drug Mechanism of action Therapeutic indication

CXCR1 and CXCR2 inhibitor Reparixin Inhibition of neutrophil migra-
tion into the tumor

Triple-negative breast can-
cer (NCT02370238)

HER2-negative meta-
static breast cancer 
(NCT02001974)

G-CSF Anti-G-CSF antibodies Inhibition of neutrophil mobili-
zation and angiogenesis

Pancreatic adenocarcinoma

TGF-β receptor inhibitor Galunisertib (LY2157299 mono-
hydrate)

N2–N1 shift Glioma
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complement component C5a, VEGF, G-CSF, M-CSF, 
GM-CSF, MMP-9, CCL2, CCL3, CCL4, CCL5, S100A8, 
S100A9, etc. were involved in MDSC enrichment and acti-
vation [99–102, 108]. Most of these factors use STAT3 and 
janus kinase signaling pathways that trigger signals for 
cell survival, proliferation, differentiation and apoptosis 
[99, 103, 108].

MDSCs represent a heterogeneous population of myeloid 
cells with a strong immunosuppressive capacity [99, 102, 
105, 106]. In humans, PMN-MDSCs can be recognized as 
CD11b+ or CD33+, CD15+ or CD66b+, and CD14− while 
M-MDSCs are CD11b+ or CD33+, CD14+, and HLA-DRlow 
cells; Lin− (including CD3, CD14, CD15, CD19, and CD56) 
HLA-DR−CD33+ cells are considered as early stage (e)
MDSC [103]. Mouse MDSCs are characterized by Gr1 and 
CD11b expression and contain three subsets: PMN-MDSC 
characterized as CD11b+Ly6G+Ly6Clow, M-MDSCs as 
CD11b+Ly6G−Ly6Chigh, as well as non-PMN-MDSCs and 
non-M-MDSCs defined as CD11b+Ly6GmedLy6Cmed cells 
[103].

MDSC subpopulations effectively inhibit T lymphocyte 
activity through various mechanisms, including the upregu-
lation of Arg-1 expression that is responsible for arginine 
depletion; stimulation of inducible NO synthase (iNOS), 
leading to the production of NO; secretion of reactive nitro-
gen and oxygen species; activation of IDO, resulting in 
tryptophan depletion; upregulation of PD-L1 expression. 
Furthermore, MDSCs produce high levels of immunosup-
pressive cytokines such as IL-10 and TGF-β [99, 102, 103, 
108, 109]. Interestingly, M-MDSCs mediate immunosup-
pression mainly via NO, whereas PMN-MDSCs produce 
large amounts of ROS and express high levels of Arg-1. 
However, both subsets could use common immunosuppres-
sive molecules such as PD-L1, IL-10 and TGF-β [87, 102, 
103, 108, 109]. In addition, murine non-PMN- and non-M-
MDSCs could also possess immunosuppressive functions 
mainly via IL-10 [110]. A recent study directly compared 
the immunosuppressive capacity and clinical relevance of 
the three human circulating MDSC subsets and identified 
mature PMN-MDSCs as dominant inhibitors of T cell func-
tions mediated by Arg-1 [111].

For a detailed critical review of MDSC-T cell functional 
interactions, we refer the reader to the companion review by 
Bruger et al. [6] in this symposium-in-writing series.

In addition to the direct T cell inhibition, MDSCs are able 
to induce and recruit Treg via TGF-β and IL-10 production 
and CD40-CD40L signaling [112, 113]. Moreover, MDSCs 
may induce Th17 cell polarization from naive CD4+ T cells 
through the production of IL-1β, IL-6, IL-23 and NO [114]. 
On the other hand, IL-17 produced by Th17 cells was shown 
to upregulate the expression of Arg-1, IDO and COX-2 in a 
mouse breast cancer model, boosting thereby the immuno-
suppressive activity of MDSCs [115].

In tumors, MDSC suppress effector T cells not only 
directly but also by the generation of M2 TAMs and N2 
TANs. As a result of this cross talk, IL-10 produced by 
MDSC not only inhibits IL-12 and TNF-α but also stimu-
lates IL-10 production in macrophages that in turn enhances 
the release of IL-10 by MDSCs [51, 52]. Tumor-infiltrating 
MDSCs could also directly differentiate into potent immu-
nosuppressive TAMs [116]. Furthermore, TGF-β secreted 
by tumor stroma cells, including MDSCs [99, 102], was 
reported to convert neutrophils into N2 TANs producing 
CCL17, a well-known chemoattractant for Treg [57]. Simi-
lar to M2 TAMs, MDSCs were shown to inhibit IL-12 and 
induce IL-10 production by DC [117]. Moreover, MDSC-
derived VEGF and IL-10 could downregulate the expression 
of MHC class II and co-stimulatory molecules on DC via 
activation of STAT3 [118]. In addition, the antigen uptake by 
DC was found to be diminished in the presence of MDSCs 
[119]. This results in the inhibition of the DC capacity to 
stimulate T cell-mediated anti-tumor immune responses.

Numerous studies reported on the accumulation of 
highly immunosuppressive MDSCs in patients with vari-
ous tumors, including hepatocellular carcinoma, melanoma, 
prostate cancer, bladder cancer, non-small cell lung cancer, 
head and neck squamous cell carcinoma as well as breast, 
gastric and colorectal cancer, which indicates the clinical 
significance of these cells [105, 118, 120–125]. Interest-
ingly, HLA-DR−CD33+CD11b+CD14+ M-MDSCs were 
also detected in patients with EBV-associated lymphoid 
tumor, the extranodal natural killer NK/T cell lymphoma, 
which can develop after chronic active Epstein–Barr virus 
(EBV) infection [126]. In another EBV-associated tumor, 
nasopharyngeal carcinoma, an expansion of CD33+ MDSCs 
was found to be due to a latent membrane protein-1 in tumor 
cells that could induce the production of IL-1β, IL-6 and 
GM-CSF critical for MDSC generation [127]. An increased 
MDSC frequency in the peripheral blood was found to cor-
relate with tumor progression and worse clinical outcome 
in patients with different tumors [105, 118, 120, 122, 123, 
128, 129]. Moreover, several publications described that 
the decreased frequency and immunosuppressive function 
of both M- and PMN-MDSCs correlated with beneficial 
therapeutic effects in cancer patients treated with the nega-
tive immune checkpoint inhibitors [122, 130, 131].

Besides immunosuppressive functions, MDSCs may con-
tribute to the remodeling of the tumor microenvironment by 
producing VEGF, FGF and MMPs. These factors stimulate 
tumor neoangiogenesis as well as cancer cell motility and 
invasion [106, 107]. Interestingly, MDSCs were reported 
to transdifferentiate towards endothelial cells contributing 
to tumor angiogenesis [132]. Moreover, TGF-β, HGF, and 
EGF produced by tumor-infiltrating MDSCs were found to 
contribute to cancer-associated epithelial to mesenchymal 
transition [133].
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Given a critical role of MDSC in tumor progression, 
several strategies to neutralize these cells were developed, 
including (1) prevention of MDSC generation; (2) MDSC 
depletion or blocking their expansion and activation; (3) 
inhibition of MDSC recruitment; and (4) blocking MDSC 
immunosuppressive function [102, 106, 109, 134–136] 
(Table 3).

Dendritic cells

DCs can be divided into myeloid and plasmacytoid DCs. 
In mice, myeloid DCs could be further subdivided in clas-
sical type I DCs (cDC1) (CD11c+/CD8α+) and type 2 DCs 
(cDC2) (CD11c+/CD11b+) cells [137]. The cDC1, which in 
tissues express CD103, can efficiently cross-present antigens 
to CD8+ T cells, while CD11b+ DCs mainly present antigens 
on MHC class II to CD4+ T cells [138]. Besides these classi-
cal DC subsets, monocytes and M-MDSCs can also contrib-
ute to the pool of tumor-infiltrating DCs by differentiating 

into inflammatory DCs [139]. In mice, these cells can be 
identified as MHC-II+/CD11b+/CD11c+/F4/80+/Ly6C+ 
and also express CD64 and FcεRI, which can be used to 
distinguish inflammatory DCs from classical DCs and mac-
rophages [139]. Studying the composition of myeloid DCs in 
different tumor models, Laoui et al. [24] demonstrated that 
CD103+ DCs were generally the smallest subset, whereas 
CD11b+ cDC2 were always well represented. Interestingly, 
the number of monocyte-derived/inflammatory DCs varies 
widely in different tumor models [24].

Depending on the factors in the tumor microenvironment, 
myeloid DC subsets can either contribute to effective anti-
tumor responses or show a more immature and/or regulatory 
phenotype. The presence of IL-10, IL-6 and VEGF in the 
tumor microenvironment induces prolonged STAT3 activa-
tion in DCs [140]. This limits DC maturation and IL-12 
production and induces the production of the immunosup-
pressive cytokine IL-10. Furthermore, tumor-derived TLR2 
ligands were found to stimulate an autocrine secretion of 
IL-10 and IL-6 by DCs and to enhance expression of the 

Table 3   Targeting of MDSCs

Target Drug Mechanism of action Therapeutic indication

iNOS inhibitors Phosphodiesterase-5 (PDE-5) inhibitors: 
tadalafil, sildenafil, nitro-aspirin

Inhibition of MDSC function Multiple myeloma (NCT01374217)
Head and neck cancer (NCT00843635)
Non-small cell lung carcinoma 

(NCT00752115)
Pancreatic cancer (NCT01342224)
Colorectal cancer (NCT00331786)

Arginase inhibitors Celecoxib, N-hydroxy-l-Arginine 
(NOHA), N(G)-Nitro-l-Arginine, 
Methyl Ester (l-NAME)

Inhibition of MDSC function Colon cancer

ROS inhibitors Bardoxolone methyl (CDDO-Me) Inhibition of MDSC function Pancreatic cancer (RTA 402-C-0702)
Anti-glycan antibodies Receptor for Advanced glycation end 

products (RAGE)
Inhibition of MDSC migration Colon cancer

CSF-1R inhibitor GW2580 Inhibition of MDSC migration Prostate cancer
Retinoid-activated tran-

scriptional regulators
All-trans retinoic acid Promotion of MDSC maturation Renal cell carcinoma

Lung adenocarcinoma
Small cell lung cancer

Triterpenoids RTA 408 Promotion of MDSC maturation Melanoma
Vitamins 25-hydroxy-vitamin D Promotion of MDSC maturation Head and neck cancer
MMP9 Biphosphonates Inhibition of MDSC generation Pancreatic cancer
STAT3 Cucurbitacin B (CuB)

STAT3 DECOY
AZD9150
Sunitinib

Inhibition of MDSC generation Advanced lung cancer
Head and neck cancer
Advanced hepatocellular carcinoma

Unknown Cisplatin
5-Fluorouracil
Paclitaxel

MDSC depletion Bronchoalveolar carcinoma
Lewis lung carcinoma

IL-6R Gemcitabine MDSC depletion Lung cancer
CCR5 Soluble fusion protein mCCR5-Ig MDSC depletion Melanoma
BRAF inhibitors Vemurafenib MDSC depletion Melanoma
Fas ligand IL-2 and anti-CD40 agonistic antibody MDSC depletion Renal adenocarcinoma
CTLA-4 Ipilimumab MDSC depletion Melanoma
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corresponding cytokine receptors, thus boosting STAT3 
activation and DC dysfunction [141]. In addition to these 
cytokines, TGF-β and other immunoregulatory agents 
such as prostaglandins, lactic acid, adenosine, galectins 
and mucins were reported to play a role in the induction of 
immunosuppressive DCs [140, 142].

The accumulation of lipids in DCs could further contrib-
ute to their dysfunction in the tumor microenvironment [143, 
144]. Lipid-loaded DCs did not differ in the expression of 
MHC or co-stimulatory molecules but had a reduced capac-
ity to process antigens. Tumor-infiltrating DCs displayed the 
highest levels of lipids. In the spleen of tumor-bearing mice, 
increased lipid levels could be detected in both cDC1 and 
cDC2. The presence of oxidized lipids was also shown to 
inhibit cross-presentation [144].

Although immunosuppressive DCs displayed no unique 
markers, they often showed a reduced expression of matura-
tion markers (CD80, CD86) and/or increased expression of 
inhibitory receptors such as PD-L1 and immunoglobulin-
like transcripts (ILTs), limiting T cell activation. It has been 
reported that monocyte-derived DCs exhibited regulatory 
properties with increased iNOS expression and IL-10 to 
IL-12 ratio, resulting in the inhibition of CD4+ and CD8+ T 
cell proliferation in a lung carcinoma model [24].

Tumor-infiltrating DCs were reported to activate anti-
tumor functions of other myeloid cells by producing IFN-β 
that induced anti-tumor polarization of TANs [145]. This 
type I IFN response was largely dependent on tumor-infil-
trating myeloid DCs in multiple tumor models, and was 
induced via the STING pathway, through the recognition 
of tumor DNA [146, 147]. Moreover, IFN-β reduced the 
accumulation of proangiogenic TANs by influencing the 
expression of CXCR2 and its ligands CXCL1, CXCL2 and 
CXCL5 [60, 61]. In addition, Type I IFNs have been shown 
to induce MDSC maturation and reduce their immunosup-
pressive activity [148]. Importantly, IFNs were also demon-
strated to inhibit the recruitment of TAMs [149].

IL-12 production by mature DCs can also broadly affect 
MRCs, reversing the suppressive function of MDSCs [150] 
and TAMs [151]. Furthermore, IL-12 is known as a potent 
inducer of IFN-γ production by T cells and NK cells. How-
ever, tumor-infiltrating DCs often show a regulatory/dys-
functional phenotype with low levels of IL-12 and increased 
IL-10 and TGFβ production, leading to an enhanced sup-
pressive function of MRCs rather than enforcing their 
immune stimulatory activity. These immunosuppressive 
cytokines can support the development of pro-tumoral mac-
rophages and neutrophils [57, 152, 153]. Tumor-infiltrating 
regulatory DCs also produced significantly higher levels of 
the chemokines CCL2, CCL4 and CXCL1, attracting mono-
cytes and neutrophils as compared to other DC populations 
[24]. In this way, regulatory DCs could sustain the immu-
nosuppressive tumor microenvironment created together 

with the other MRCs. Therefore, it is crucial to interrupt 
this vicious cycle of immunosuppression for effective anti-
tumor immunotherapy.

Intratumoral DCs mainly affect the tumor progression or 
regression via an activation or inhibition of T cells and NK 
cells or induction of Treg. It has been recently demonstrated 
that tumor-infiltrating CD103+ cDC1 could not only induce 
an antigen cross-presentation to CD8+ T cells, but also sup-
port the T cell recruitment into the tumor [154]. However, 
when intratumoral DCs gain regulatory functions they are 
not able to efficiently activate T cells but can rather coun-
teract T cell functions, protecting tumor cells from immune-
mediated killing [155].

Similar to mouse-circulating myeloid DCs, their human 
counterparts could be divided into two main subsets: 
CD141+ (BDCA3+) cDC1 (so-called cross-presenting sub-
set) and CD1c+ (BDCA1+) cDC2 [137, 138]. In addition to 
these classical DC subsets, monocyte-derived “inflammatory 
DCs” could also be found under inflammatory conditions in 
humans. They express HLA-DR, CD11c, BDCA1, CD1a, 
FcεRI, CD206, CD172a, CD14 and CD11b markers [138]. 
The presence of these DC subsets has been described in dif-
ferent human tumors, including lung and colorectal cancer 
[138]. As suggested from mouse studies, the accumulation 
of cDC1 was found to correlate with better clinical outcome 
in patients with various tumors [156, 157].

Most factors known to trigger regulatory DCs in mice 
have also been shown to induce a regulatory phenotype 
in human DCs in vitro. Indeed, tumor cell-conditioned 
medium could stimulate STAT3 activation, limit DC matu-
ration, decrease IL-12 to IL-10 ratio and increase lipid lev-
els in human monocyte-derived DCs [140, 143, 158, 159]. 
Therefore, one of the critical questions to address is how to 
prevent the detrimental effects of the tumor microenviron-
ment on DC function in cancer patients. To this end, both 
small-molecule inhibitors and antibodies targeting DCs 
are currently under investigation to block their tolerogenic 
capacities and activate their immunostimulatory functions 
to increase the efficiency of tumor immunotherapy [160, 
161] (Table 4). An additional novel strategy to target all 
abovementioned subsets of MRCs in cancer involves vac-
cination against immunosuppressive proteins expressed by 
these cells, e.g., IDO or Arg-1 [162].

Conclusion

In the current review that is a part of a symposium-in-writing 
on MRCs generated following the MYE-EUNITER COST 
action, we combined the knowledge of many researchers in 
the field, and described the effects and importance of MRCs 
in the development and progression of cancer. The myeloid 
immune system, affected by powerful influences from the 



	 Cancer Immunology, Immunotherapy

1 3

tumor and stroma, becomes a crucial player in determining 
the fate of cancer cells and metastases. As we have shown, 
all the different types of myeloid cells, i.e., monocytes and 
macrophages, neutrophils, MDSCs and DCs can have both 
supportive and detrimental roles in cancer, and their regula-
tion is a potential key target in future anti-cancer therapeu-
tics. The understanding of the regulatory effects of these 
cells has grown tremendously during the last decade, and it 
is now clear that these cells are important players that should 
be explored and targeted in the battle to conquer cancer.
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