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Interferon-gamma (IFN-γ) is a pleiotropic molecule with associated antiproliferative, 
pro-apoptotic and antitumor mechanisms. This effector cytokine, often considered as a 
major effector of immunity, has been used in the treatment of several diseases, despite 
its adverse effects. Although broad evidence implicating IFN-γ in tumor immune sur-
veillance, IFN-γ-based therapies undergoing clinical trials have been of limited success. 
In fact, recent reports suggested that it may also play a protumorigenic role, namely, 
through IFN-γ signaling insensitivity, downregulation of major histocompatibility com-
plexes, and upregulation of indoleamine 2,3-dioxygenase and of checkpoint inhibitors, 
as programmed cell-death ligand 1. However, the IFN-γ-mediated responses are still 
positively associated with patient’s survival in several cancers. Consequently, major 
research efforts are required to understand the immune contexture in which IFN-γ 
induces its intricate and highly regulated effects in the tumor microenvironment. This 
review discusses the current knowledge on the pro- and antitumorigenic effects of IFN-γ 
as part of the complex immune response to cancer, highlighting the relevance to identify 
IFN-γ responsive patients for the improvement of therapies that exploit associated sig-
naling pathways.
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iNTRODUCTiON

Interferons (IFNs) are pleiotropic cytokines with antiviral, antitumor and immunomodulatory 
properties, being central coordinators of the immune response (1). The term “interferons” comes 
from the description of molecules protecting cells by “interfering” with viral infection (2, 3). Three 
major types of IFNs are distinguished by their sequence identity, genetic loci, cell of origin, nature, 
and distribution of their receptors and resulting stimuli (Table 1).

The human type I IFN family comprises 17 distinct proteins, mainly represented by IFN-α  
and IFN-β, which are ubiquitously expressed and signal through their cognate receptor, composed  
by IFNαR1 and IFNαR2 subunits [reviewed in Ref. (4)]. IFN-γ is the lone member of type II IFN 
family. It is more restrictively expressed and is structurally and functionally different from the other 
types of IFNs. Most recently, a type III IFN family was described to be composed of four homologous 
proteins (IFNλ1–4), which bind the IFNλR1 and interleukin (IL)-10Rβ heterodimeric receptor 
[reviewed in Ref. (8)]. To date, type I and type III IFNs have been mainly involved in host–pathogen 
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Table 1 | Comparison of human type I, type II, and type III IFN production and signaling.

Properties Type i iFN (iFN-α, iFN-β) Type ii iFN (iFN-γ) Type iii iFN (iFN-λ)

Members 17 proteins: 13 IFN-α, IFN-β, IFN-ε, IFN-κ, 
IFN-ω

1 protein: IFN-γ 4 proteins: IFN-λ1, IFN-λ2, IFN-λ3, 
IFN-λ4

IFN-producing cells All nucleated cells T cells, B cells, NK cells, NKT cells, and APCs All nucleated cells, mainly mDCs, pDCs, 
and epithelial cells

IFN-responding cells All nucleated cells All nucleated cells Lung, intestine, and liver epithelial cells

Stimuli DAMPs and PAMPs IL-12, IL-15, IL-18, type I IFN, and PAMPs DAMPs and PAMPs

IFN receptor IFN type I receptor (IFNαR): IFNαR1 and 
IFNαR2 subunits

IFN type II receptor (IFNγR): IFNγR1 and IFNγR2 
subunits

IFN type III receptor (IFNλR): IFNλR1 
and IL10Rβ

Signaling molecules TYK2, JAK1, all STATs, CRKL, and IRS JAK1, JAK2, STAT1, and STAT3 TYK2, JAK1, STAT1, STAT2, and IRF9

Transcription factor binding 
sites

ISRE (canonical)
GAS (non-canonical)

GAS (canonical)
ISRE (non-canonical)

ISRE

Functions Antiviral, antiproliferative response, 
regulation of cell survival/apoptosis, and 
immunoregulation

Antiviral, antiproliferative, immunomodulatory, and 
antitumor response

Antiviral response, mucosal immunity

Reference (4, 5) (6, 7) (8)

APCs, antigen-presenting cells; CRKL, CT10 regulator of kinase-like; DAMPs, damage-associated molecular patterns; GAS, gamma-activated site; IFN, interferon; IFN-γ, interferon-
gamma; IFNαR1–2, type I receptor; IFNγR, type II receptor; IFNλR, type III receptor; IL, interleukin; IRF, interferon-regulatory factor; IRS, insulin receptor substrate; ISRE, interferon-
sensitive response element; JAK, Janus kinase; mDCs, myeloid dendritic cells; NK, natural killer; NKT, natural killer T cells; PAMPs, pathogen-associated molecular patterns; pDCs, 
plasmacytoid dendritic cells; STAT, signal transducer and activator of transcription; TYK, tyrosine kinase.

2

Castro et al. Dual Role of IFN-γ in Cancer

Frontiers in Immunology | www.frontiersin.org May 2018 | Volume 9 | Article 847

interactions, and their expression is activated through immune 
system sentinel receptors, such as pattern recognition receptors. 
Despite the similar function of type I and III on antiviral infections, 
it is the viral tropism that dictates the relative contribution of each 
IFN (9). Moreover, whereas almost all nucleated cells respond to 
type I IFN, type III IFNs response is restricted to tissues with a 
high risk of viral exposure and infection, as the mucosal surfaces. 
The role of type II IFN in promoting host immune response to 
microorganisms is similarly well documented. Notably, it is also 
known to play a pivotal function on cancer immune surveillance, 
stimulating antitumor immunity and promoting tumor recog-
nition and elimination (10–16).

This review focuses on type II IFN signaling, cellular func-
tions, and directed therapies and was encouraged by novel 
findings revealing regulatory mechanisms of IFN-γ and its prog-
nostic as well as therapeutic potential. In fact, since Wheelock 
who reported that IFN-γ inhibited viral replication in 1965 (17), 
it took around 30 years to envisage this cytokine as a target of 
antitumor immunity (18).

Interferon-gamma is a homodimer formed by the non-
covalent association of two 17 kDa polypeptide subunits. During 
synthesis, after multiple N-glycosylation, both subunits bind in 
an antiparallel manner, constituting a mature 50 kDa molecule 
(19, 20). Notably, the IFN-γ symmetry suggests that a single 
molecule can bind simultaneously to two receptors, amplifying 
the underlying responses. Cellular responses induced by IFN-γ 
may also involve cross-communication with IFN-α/β receptors, 
amplifying IFN-γ signaling and its effects (21, 22).

Interferon-gamma is secreted predominantly by activated 
lymphocytes such as CD4 T helper type 1 (Th1) cells and CD8 
cytotoxic T cells (23–26), γδ T cells (27–33), and natural killer 
(NK) cells (34, 35) and, to a less extent, by natural killer T cells 
(NKT), B  cells (36–39), and professional antigen-presenting 
cells (APCs) (40–42). Its expression is induced by mitogens and 
cytokines, such as IL-12 (43, 44), IL-15 (45), IL-18 (46, 47), and 

type I IFN (48, 49). IFN-γ pleiotropic functions are mediated by 
cell-specific expression of hundreds of IFN-γ-regulated genes 
that encompass inflammatory signaling molecules, apoptosis 
and cell cycle regulators, and transcriptional activators (50). 
Autocrine IFN-γ produced by APCs can act locally and contrib-
ute to sustain self and neighbor cell activation (51–53), crucial 
for early control of pathogen spreading, while T lymphocytes are 
the major paracrine source of IFN-γ in adaptive immunity. Under 
physiological conditions, the constitutive expression of type I and 
II IFNs is tightly controlled, remaining localized to tissues, with-
out systemic effects (54–56). For instance, constitutive expression 
of endogenous IFN-γ contributes to the homeostasis of immune 
cell functions (57), maintenance of the hematopoietic stem cell 
niche (58), and bone formation (59). Combination approaches to 
boost innate immune activation have been explored to converge 
onto IFN pathways. However, IFN-γ-related signaling can also 
have suppressive immunoregulatory effects on antiviral (60, 61), 
autoimmune (62, 63), as well as on antitumor responses (64, 65). 
Unveiling cellular targets of IFN-γ is critically important for its 
therapeutic application, to predict patient responses, particularly 
in cancers where this cytokine can exert protumorigenic effects. 
Therefore, the cellular and molecular effects of IFN-γ, with par-
ticular emphasis on its dual role on tumor immunity and how to 
overcome its limitations, will be the major focus of this review.

CaNONiCal SiGNaliNG aND 
ReGUlaTORY MeCHaNiSMS

The iFN-γ Receptor
The IFN-γ receptor is composed of two ligand-binding IFNγR1 
chains associated with two signal-transducing IFNγR2 chains, 
which are responsible for connecting to the cytoplasmic trans-
duction machinery (see Figure  1). The IFNGR1 and IFNGR2 
are localized in chromosome 6 and 21, respectively, and their 
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FiGURe 1 | Interferon-gamma (IFN-γ) canonical signaling pathway. Upon ligand binding, IFNγR1 and IFNγR2 oligomerize and transphosphorylate, activating Janus 
activated kinase (JAK) 1 and JAK2. These, in turn, phosphorylate IFNγR1, creating a docking site for the signal transducer and activator of transcription (STAT) 1. 
Phosphorylated STAT1 homodimerizes in an antiparallel configuration, forming a complex gamma-activated factor (GAF), which translocates to the nucleus and binds 
to gamma-activated site (GAS), located at the promoters of primary response genes, increasing their transcription. Upon induction, transcription factor interferon- 
regulatory factor 1 (IRF1) binds to interferon-stimulated response element (ISRE) and enhances the transcription of several secondary response genes responsible 
for several immunomodulatory functions. Suppressor of cytokine signaling (SOCS) proteins negatively regulate the IFN-γ pathway by inhibiting JAKs and STAT1 
phosphorylation. Through dephosphorylation and deacetylation, the configuration of STAT1 homodimers reverts to parallel, triggering their exit from the nucleus.
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expression differs significantly. While IFNγR1 is constitutively 
expressed at moderate levels on the surface of almost all cells, 
IFNγR2 is constitutively expressed at low levels, and its expression 
is tightly regulated, according to the state of cellular differentia-
tion or activation (66). For example, CD4 T helper cell subsets 
differ in their ability to respond to IFN-γ (67, 68). Remarkably, 
IFN-γ activates the signal transducer and activator of transcrip-
tion (STAT) 1 that maintains the expression of T-bet, the master 
transcription factor that controls IFN-γ expression in T cells (69). 
This signaling constitutes a positive feedback loop that maximizes 
Th1 immunity (70–72). Notably, Th1 cells are more resistant to 
the antiproliferative effects of IFN-γ than Th2 cells. This is likely 
due to lower levels of expression of the IFNγR2 subunit that 
allows Th1 cells to continue to proliferate during IFN-γ signaling. 
By contrast, Th2 cells that do not produce IFN-γ express higher 
levels of the IFNγR2 subunit, rendering them particularly sus-
ceptible to the presence of IFN-γ that inhibits their proliferation 

(67, 68, 73). Nevertheless, IFNγR2 downregulation may be also 
induced in Th2 cells when they are exposed to IFN-γ (68). Thus, 
IFN-γ appears to regulate the expression of its own receptor 
on specific cell types, representing a regulatory mechanism of 
cellular desensitization in response to cytokines present at the 
local microenvironment. As a result, IFNγR2 expression can be a 
limiting factor in IFN-γ responsiveness and functional outcome 
that can dictate the Th1–Th2 phenotype switch and modulate the 
subsequent immune response.

JaK/STaT Signaling Pathway
The biological effects of IFN-γ are elicited through activation of 
intracellular molecular signaling networks, mainly via the JAK/
STAT pathway, which modulates the transcription of hundreds 
of genes and mediates diverse biological responses (50, 74–76). 
Upon IFN-γ binding, the intracellular domains of IFNγR2 
oligomerize and transphosphorylate with IFNγR1, activating 
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the downstream signaling components, JAK1 and JAK2. The 
activated JAKs phosphorylate the intracellular domain of the 
receptor (tyrosine 440 on human IFNγR1), creating binding sites 
for STAT1 (77). STAT1 is then phosphorylated in the C-terminus 
on tyrosine Y701 residues by JAK, resulting in the formation 
of STAT1 homodimers complexes, known as gamma-activated 
factors (GAFs), which translocate to the nucleus and regulate 
gene expression through binding to gamma-activated site (GAS) 
elements in the promoters of interferon-stimulated genes (ISGs) 
(78). One of the major primary response genes induced by STAT1 
signaling is the transcription factor interferon-regulatory factor 1 
(IRF1), a member of the IFN regulatory transcription factor fam-
ily (79). IRF1 functions as a transcription activator of interferon-
stimulated response elements (ISRE), leading to the transcription 
of a large number of secondary response genes (Figure 1). For 
instance in breast cancer cells, a genome-wide identification 
of IFN-γ-induced IRF1 activation reveals over 17,000 binding 
sites, with “apoptosis” or “cell death” as the most enriched target 
processes underlying the direct tumoricidal property of the 
cytokine (80). However, tumor cells also develop resistance to 
IFN-γ through differential IRF1 responsiveness, pointing out that 
the JAK/STAT signaling pathway needs to be tightly regulated 
to avoid detrimental consequences of excessive stimulation and 
highlighting its role on immune responses and tumorigenesis 
(81). STAT1 targets of the IFN-γ-mediated signaling also include 
the SMAD family member 7 (SMAD7), and proteins involved 
in cell cycle regulation, such as c-Myc and the cyclin-dependent 
kinase inhibitor 1A (82–84).

The JAK/STAT signaling pathway is regulated at several levels 
by positive and negative mechanisms. In particular, deregulation 
or inhibition of the JAK/STAT pathway leads to lowered immu-
nity and is often associated with increased tumorigenesis (85, 86) 
or metastatic dissemination (87). STATs are also involved in the 
development and function of the immune system and play a role 
in maintaining tumor surveillance [reviewed in Ref. (88)]. STAT1, 
as a tumor suppressor, is deducted for its expression in tumor 
cells, modulates their immunological status and consequently 
their response to antitumor immune responses. Indeed, STAT1-
deficient tumor cells were more susceptible to NK  cells while 
STAT1-proficient tumor cells were more sensitive to CD8+ T cells 
(89). In the same way, STAT1-deficient mice that are impaired 
in Th1 cell polarization, exhibited reduced IFN-γ expression and 
compromised cytolytic and NK lytic activity, failing to control 
tumor growth in contrast with wild-type mice (90). In addition, 
cell-autonomous tumor-suppressor functions of STAT1 have also 
been reported in breast cancer (91). However, there is growing 
evidence that STAT1 also acts as a tumor promoter (92–94) 
since it can enhance resistance to chemotherapeutic agents and 
radiation in carcinoma (95). Importantly, STAT1 also partici-
pates in the signaling from different cytokines, including IL-21, 
IL-27, and IL-35. These cytokines have been proposed to limit 
antitumor immunity in specific cellular, molecular, and micro-
environmental contexts (96–101). Thus, STAT1 phosphorylation 
reflects not only the threshold and magnitude of IFN-γ response 
but also of other immune mediators, highlighting the impor-
tance of the regulation of STAT1 phosphorylation. One of the 
most important negative regulators of the JAK/STAT signaling 

pathway is the suppressor of cytokine signaling (SOCS) proteins, 
which expression is increased in response to IFN-γ signaling 
through IRF1 (102, 103). SOCS blocks the activity of JAKs by a 
negative feedback loop, but also regulates other cytokines down-
stream signaling. SH2 domains in SOCS proteins directly bind 
to phosphorylated tyrosine residues of activated JAKs, blocking 
the recruitment of signal transducer adaptors, such as STATs, and 
JAK activity (102). Furthermore, SOCS promote interactions that 
lead to ubiquitination and proteasome degradation of compo-
nents of the JAK/STAT signaling (104, 105). SOCS1 even prevents 
regulatory T (Treg) cells from producing IFN-γ by suppression 
of STAT1, avoiding the conversion of Treg cells into effector cells 
(106). In addition, SOCS2-deficient mice showed a reduction in 
lung metastases and an increase in survival following melanoma 
challenge (107).

Alternatively, the transcriptional activity of STAT1 can be 
positively regulated by other signaling cascades triggered by 
IFN-γ binding, such as the mitogen-activated protein kinase 
pathway, protein kinase C, and PI3K/AKT, which phosphoryl-
ate STAT1 in its transactivation domain (108). Adding to the 
complexity, under certain circumstances, IFN-γ also can activate 
STAT1-independent pathways through other transcription fac-
tors, namely STAT3 (109), STAT5 (110), nuclear factor-kappa 
B (NF-κB) (111), and activator protein 1 (112). In conclusion, 
the primary response of IFN-γ is mediated by GAF that acts on 
genes with GAS binding sequence in their promoter, while the 
primary response of type I IFNs is mediated by ISGF3 (STAT1/
STAT2/IRF9 complex) that induces genes that have ISRE in their 
promoter. Thus, some of the ISGs are regulated by both types of 
IFNs, whereas others are selectively regulated by each type of IFN, 
consequently potentiating the diversity of biological responses.

biOlOGiCal FUNCTiONS

iFN-γ actions on immune Cells
Interferon-gamma signaling pathway coordinates several bio-
logical responses, primarily involved in host defense and immune 
surveillance but also in the establishment of adaptive immunity 
(Figure 2) and in the regulation of inflammation, apoptosis and 
cell cycle. One of the first described biological effects of IFNs was 
the upregulation of the major histocompatibility complex (MHC) 
molecules (113, 114) as well as the upregulation of the whole 
MHC I and II antigen processing and presentation machinery 
including transporter associated with antigen processing (TAP) 
1/2, invariant chain, and the expression and activity of the 
proteasome (115–122). Furthermore, in some tumor types, 
such as multiple myeloma and melanoma cells, IFN-γ can also 
upregulate the MHC class II transactivator (CIITA) that leads 
to MHC class II expression (123, 124). Thus, IFN-γ initiates an 
immune-antigenic exposure program in the target cells, and this 
ensures the rapid recognition of stressed tissues. IFN-γ is a major 
product of Th1-mediated immune response and orchestrates 
Th1 effector mechanisms, as further activation of innate immu-
nity (macrophages and NK  cells) in a positive feedback loop. 
Upregulation of cell surface MHC class I by IFN-γ is crucial for 
host response to intracellular pathogens and tumor cells, due to 
cytotoxic T cell activation, promoting cell-mediated immunity. 
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FiGURe 2 | Immunomodulatory effects of interferon-gamma (IFN-γ). IFN-γ produced by immune cells affects the behavior of distinct immune cells within the tumor 
microenvironment. Specifically, IFN-γ plays a major role in activating anticancer immunity, by promoting the activity of CD4 T helper type 1 cells, CD8 cytotoxic  
T lymphocyte (CTL), natural killer (NK) cells, dendritic cells (DCs), and macrophages, promoting the antigen presentation. Additionally, IFN-γ activates macrophages 
towards a more pro-inflammatory and tumoricidal phenotype (M1-like). Alternatively, IFN-γ inhibits regulatory T (Treg) cells, Th2 and Th17 differentiation and functions.
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IFN-γ directly acts as a cytotoxic CD8 T cell differentiation signal, 
and it is essential for the induction of cytotoxic T  cell precur-
sor proliferation (125, 126). IFN-γ also upregulates cell surface 
MHC class II on APCs, thus promoting peptide-specific activa-
tion of CD4 T cells (25, 127–129). In addition, IFN-γ activates 
macrophages toward a pro-inflammatory profile, exhibiting an 
increased phagocytic ability as well as enhanced microbial kill-
ing activity (130). In fact, IFN-γ was initially shown to induce 
“classical” activation of macrophages and polarization toward a 
tumoricidal phenotype (131). Interestingly, the original name 
of IFN-γ was macrophage activation factor (132, 133). IFN-γ 
controls specific gene expression programs involving more than 
290 genes related to cytokine and chemokine receptors, cell 
activation markers, cellular adhesion proteins, MHC proteins, 
proteasome formation, protein turnover, and signaling media-
tors and regulators (134). The ability of IFN-γ to induce tumor 
cell killing includes the activation of the NADPH-dependent 
phagocyte oxidase system, nitric oxide production, tryptophan 
depletion and upregulation of lysosomal enzymes (121, 135, 
136). These events result in recruitment of effector cells to help 
in the inflammation resolution process (137, 138). In addition, 
as a major cytokine of Th1  cells, IFN-γ maintains Th1 lineage 
commitment through a positive feedback loop that stabilizes 
the Th cell phenotype (72, 139–141) and cross-inhibits the dif-
ferentiation to other Th cell subsets (Figure  2). Indeed, IFN-γ 
inhibits Th2 cell differentiation (142, 143) and consequently IL-4 
production. This regulation involves the inhibition of the IL-4/
STAT6 pathway, required for Th2 cell differentiation, and it is 
mediated at least by IFN-γ-induced SOCS1 that inhibits IL-4R 
signaling (144, 145). Furthermore, IFN-γ-induced T-bet inhibits 
Th2 cell differentiation by directly interfering with the activity of 
Th2 cell-specific transcription factor, GATA-3 (146). Höfer and 
colleagues, using mathematical models, proposed that IL-4 also 
acts to propagate Th2 cell differentiation (147). A high IL-4 level 
promotes increased GATA-3 expression that further enhances 

GATA-3 transcriptional imprinting for Th2 differentiation (147, 
148). This model proposed that high expression state of GATA-3 
can be suppressed by strong inhibition of autoactivation, as 
observed in the presence of Th1-polarizing conditions (147, 149). 
IFN-γ was also described to downregulate the IL-4-inducible 
gene expression (150). The cross-regulation of Th1 and Th2 cells 
was also demonstrated in STAT6-deficient mice, which lack Th2 
phenotype and associated immune responses. These animals 
displayed augmented tumor-specific IFN-γ production and 
cytotoxic T cell activity and, consequently rejected the tumor cell 
line that grew progressively in the wild-type control (151).

Interferon-gamma produced by Th1  cells also counteracts 
Th17  cell development and their effector functions (152–154). 
Several mechanisms can be considered as the inhibition of 
molecules involved in the Th17 differentiation (155, 156), the 
inhibition of STAT3 by STAT1 (157) and recently, T-bet was 
demonstrated to prevent differentiation of Th precursors into 
Th17 cells by blocking the expression of the Th17 cell lineage-
specific transcription factor, RORγt (158). Furthermore, IFN-γ 
also exerts regulatory functions to limit tissue damage associated 
with inflammation (63, 159–162) (Figure  2). IFN-γ has been 
classically considered as a pro-inflammatory cytokine, involved 
in the regulation of anti-inflammatory responses, by antagoniz-
ing the IL-10 (157, 163) and TGF-beta (164) signaling pathways. 
Consequently, IFN-γ inhibits Treg cell differentiation and func-
tions (165, 166). However, in some chronic inflammation condi-
tions, IFN-γ plays a crucial role in attenuating tissue destruction. 
In this case, IFN-γ might be protective (62, 167) by promoting the 
number and function of Treg cells (168–170). In addition, IFN-γ 
production by Treg cells themselves was shown to be a key feature 
of the Treg cells that are capable of dampening Th1 cell responses 
(171–174). Thus, IFN-γ dictates the differentiation of specialized 
Foxp3+T-bet+ Treg cells that selectively suppress Th1 cells, and 
constitute a negative feedback loop to minimize the detrimental 
effect of IFN-γ. IFN-γ also promotes the differentiation of 
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myeloid-derived suppressor cells (MDSCs) that restrain overac-
tivation of effector T cells, maintaining tissue homeostasis (175, 
176). Other regulatory mechanisms involving IFN-γ signaling 
that dampen the magnitude of the immune response have been 
reported, as the induction of indoleamine 2,3-dioxygenase (IDO) 
by Treg cells, monocytes and stromal cells (177–180), and of the 
programmed cell death 1 (PD-1) ligand (PD-L1) on immune and 
transformed cells, inhibiting T cell responses (181–183).

iFN-γ actions on Transformed Cells  
and on the Tumor Microenvironment
Interferon-gamma is involved in antiproliferative (18), anti-
angiogenic (184) and pro-apoptotic effects established against 
neoplastic cells. How IFN-γ induces the signaling pathways 
initiating and propagating the apoptotic cascade remains to be 
elucidated. The level of complexity is demonstrated by the fact 
that the mechanism might depend on the tumor cells themselves. 
For example, while in a glioblastoma cell line the induction of 
apoptosis was due to suppression of the PI3K/AKT pathway, in 
another glioblastoma cell line apoptosis occurred independently 
of the PI3K/AKT pathway but required NF-κB (185). It was also 
shown that IFN-γ induces apoptosis of human pancreatic car-
cinoma cells in a caspase-1-dependent manner (186). A review 
covered in detail the mechanism of induction of programmed 
cell death (187). So far, the known biological functions of IFN-γ 
indicate that, although it can act as a potent inducer of antitumor 
immunity, it actually has a dual role and may also favor tumor 
immune evasion.

iFN-γ iN CaNCeR

The first reports pointing to the relevance of IFN-γ in antitumor 
immunity came from studies with the fibrosarcoma (Meth A) cell 
line, refractory to IFN-γ signaling, since it lacks the expression 
of the IFNγR1 subunit. IFN-γ-insensitive Meth A cells displayed 
enhanced tumorigenicity compared with control cells and were 
not rejected in syngeneic tumor mice models, suggesting that 
IFN-γ plays an important role in tumor cell elimination (18). 
This finding was further supported by experiments using 129/
SV IFN-γ insensitive mice, lacking the IFNγR1 subunit or 
STAT1, which developed 3-methylcholanthrene (MCA)-induced 
sarcomas more rapidly and more frequently than their wild-type 
counterparts (12). Similarly, these IFN-γ-insensitive mice lacking 
the tumor-suppressor protein p53 formed spontaneous tumors 
more rapidly than IFN-γ-sensitive p53-deficient mouse (12). 
In addition, C57BL/6 mice that lack the gene encoding IFN-γ 
also displayed higher susceptibility to experimental (B6, RM-1 
prostate carcinoma) and spontaneous (BALB/c, DA3 mammary 
carcinoma) models of primary and metastatic tumors (13, 14). 
Notably, further studies described that IFN-γ may cooperate 
with other molecules to prevent tumor formation. Mice deficient 
in both granulocyte/macrophage colony-stimulating factor 
(GM-CSF) and IFN-γ developed lymphoma and non-lymphoid 
solid tumors at a higher rate than did mice deficient in GM-CSF 
or IFN-γ alone (15). Additional studies revealed that mice insen-
sitive to IFN-γ, or that lack the recombination activating gene 
(RAG) protein (failing to produce mature B and T lymphocytes), 

or that lack both, showed similar incidence of MCA-induced 
sarcomas, suggesting that the T  cell–IFN-γ axis is involved in 
immune surveillance (10).

The role of IFN-γ on cancer immunoediting emerged from 
studies assessing the immunogenicity of tumors from immuno-
competent versus immunodeficient mice. Kaplan et al. showed 
that MCA-induced sarcoma cells from IFNγR1-deficient mice 
(unresponsive to IFN-γ signaling) grow as aggressively in immu-
nocompetent as in IFNγR1-deficient mice. However, when IFN-γ 
responsiveness was conferred on the tumor cells by introducing 
the IFNγR1 subunit, they became more immunogenic and were 
rejected through a T  cell-dependent manner (12). This consti-
tutes the first demonstration that IFN-γ sensitivity of the tumor 
is fundamental for an efficient antitumor response. Other studies 
revealed that wild-type hosts rejected 40% of MCA-induced 
sarcomas derived from RAG2-deficient mice, showing that these 
tumors were more immunogenic than those from wild-type 
mice (10). In addition, human tumors were evaluated for their 
ability to upregulate MHC I expression in response to IFN-γ 
stimulation. These studies revealed that 33% of 33 melanoma 
tumor cell lines showed a reduction in IFN-γ sensitivity while 4 
of 17 lung adenocarcinoma cell lines were totally unresponsive to 
IFN-γ (12). This lack of response resulted from cellular defects 
on IFNγR1 and of JAK proteins and may explain the ability of 
many tumor cells to evade the immune response. Recently, 
JAK1/2 deficiency was demonstrated to protect melanoma cells 
from antitumor IFN-γ activity and results in T-cell-resistant 
melanoma lesions (188). Others reported the lack of STAT1 in 
melanoma cell lines and in some chronic myeloid leukemia cells 
(189). Furthermore, DNA methylation that selectively represses 
CIITA, in colorectal and gastric cancer cell lines, was associated 
with the absence of IFN-γ-induced HLA-DR, suggesting that 
this epigenetic alteration of CIITA enables some gastrointestinal 
cancer cells to evade the immune system (190). Concomitantly, 
epigenetic alterations repressing MHC2TA were described in 
T cell leukemias, B cell lymphomas, and in several cancer cells, 
such as small cell lung cancer and neuroblastoma cells that were 
unable to express MHC II upon IFN-γ stimulation (191–194). 
Consistently, IFN-γ upregulates CIITA expression on multiple 
myeloma and melanoma cells increasing their MHC II expres-
sion (123, 124). These findings indicate that IFN-γ acts on tumor 
cells, enhancing their recognition by CD8 T cells as well as by 
CD4 T cells, and unveiling a key role in the promotion of tumor 
immunogenicity. Altogether, these works pave the way for the 
elaboration of the stepping-stone concept of immunoediting 
promoted by IFN-γ (195, 196).

iFN-γ-Mediated Mechanisms Underlying 
antitumorigenic effects
As described earlier, the mechanisms by which IFN-γ exerts 
its antitumor effects depend on multiple processes. IFN-γ is 
described as an antiproliferative agent that regulates the expres-
sion of cyclin-dependent kinase inhibitor 1 (p21) through STAT1 
activation in tumor cells (84, 197). Moreover, IFN-γ is able to 
promote tumor cells apoptosis by upregulating the expression of 
caspase-1, -3, -8 (198, 199) and by enhancing the secretion of 
FAS and FAS ligand (200) and TNF-related apoptosis-inducing 
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ligand (201, 202). Recent studies showed that IFN-γ also induces 
its tumoricidal effects through a form of regulated necrotic death 
(also named as necroptosis) that relies on the activity of the 
serine–threonine kinase RIP1 (203). Importantly, IFN-γ is also 
involved in the inhibition of angiogenesis, impairing the prolif-
eration and survival of endothelial cells, inducing ischemia in the 
tumor stroma (184, 204, 205). In particular, IFNγR is expressed 
on blood endothelial cells and engagement of the receptor results 
in blood vessel destruction and necrosis, an important mecha-
nism that leads to tumor rejection (206).

Considering the effect of IFN-γ on the host immune cells 
present at the tumor microenvironment, major efforts have 
been made for the development and establishment of combined 
clinical therapeutic applications (90, 151, 207). IFN-γ is critical 
for T cell, NK and NKT cell trafficking into the tumors through 
CXCL9, CXCL10, and CXCL11 chemokine induction (208, 209). 
Accordingly, T cells fail to migrate to tumor site in IFNγ-deficient 
mice (65). In commitment, dipeptidylpeptidase 4 inhibition, a 
protease that inactivates these chemokines, enhanced tumor 
rejection by increasing lymphocytes trafficking into the tumor 
(210). Lately, galectin-3 secreted by several tumors was dem-
onstrated to bind glycosylated IFN-γ at the tumor extracellular 
matrix, avoiding IFN-γ diffusion and the formation of an IFN-
γ-induced chemokine gradient required for T  cell recruitment 
and infiltration (211). In addition, CXCL10 also prevents tumor 
angiogenesis by blocking endothelial cell proliferation (212) 
and consequently a decrease in microvessel density as observed 
in melanoma tumor xenografts (213). Apoptosis of endothelial 
cells by IFNs causes restriction of blood flow within the tumor 
vasculature, leading to tumor shrinkage (214). This is an effect of 
IFN-γ, not directly targeted to the tumor cell, but to the tumor 
vasculature, with drastic and desirable effects on tumor growth. A 
recent report also showed that IFN-γ was essential for the initial 
priming and differentiation of cytotoxic T  cells residing in the 
periphery of the eye, contributing to the regression of intraocular 
tumors (215). Supporting data from therapy models showed that 
IFN-γ induces survivin and ifi202, two genes involved in T cell 
maturation, survival, and proliferation, in tumor-specific T cells 
(216). Overall, these studies demonstrated the relevance of IFN-γ 
on T cell-mediated antitumor immunity.

Interferon-gamma is also involved in macrophages tumori-
cidal activity (217). This cytokine supports a CD4 T  cell/
macrophage effector axis which acts as immune surveillance 
mechanism for MHC II-negative cancer cells (25). Indeed, upon 
recognition of tumor antigens present in the context of MHC II 
by macrophages, CD4 T cells secrete IFN-γ that further activates 
macrophages in the tumor, leading to tumor growth inhibition 
(25). This collaboration between CD4 T cells and macrophages 
was also essential for successful cancer immune surveillance in 
non-solid cancers, as myeloma and B-cell lymphoma. Indeed, 
Th1-secreted IFN-γ was shown to trigger a cytotoxic activity 
of tumor-associated macrophages (TAMs) and also induces 
CXCL9/MIG and CXCL10/IP-10 secretion by macrophages, 
which may affect the tumor progression by angiogenesis 
inhibition (129). IFN-γ-activated macrophages also acquire a 
tumoricidal phenotype with the upregulation of cytotoxicity-
associated markers including granzyme A/B, and NKG2D (129). 

In addition, in STAT6-deficient mice, that display increased 
levels of IFN-γ, rejection of metastatic disease after removal of 
the primary tumor involved the generation of pro-inflammatory 
macrophages, also termed M1-like macrophages, and a decrease 
in MSDCs that accumulated during primary tumor formation 
(218). Studies from APCMin/+ mice (that are highly susceptible 
to spontaneous intestinal adenoma formation) lacking IFN-γ 
signaling showed an accumulation of TAMs, more prone towards 
protumoral (M2-like) polarization, and upregulation of matrix 
metalloproteases. These results suggest that IFN-γ unresponsive-
ness contributes to the creation of an anti-inflammatory micro-
environment, favorable to intestinal tumorigenesis (219). The 
properties of IFN-γ to reverse the myeloid immunosuppressive 
functions were also demonstrated in protumor role of human 
ovarian TAMs (220) and human M2-like macrophages (221).

Importantly, IFN-γ has also a key role on IL-12 production, 
supporting the activity of this later cytokine in cancer immune 
surveillance (222–225). Indeed, exogenous IL-12 administration 
into fibrosarcoma-bearing mice resulted in a complete tumor 
regression (222). This observation was extended to primary 
tumorigenesis models treated with exogenous IL-12 (226, 227). 
Consistent with this, chimeric antigen receptor-redirected T cells 
enginee red to produce IL-12 where found to secrete increased IFN-
γ levels and to display enhanced antitumor cell activity (228–230).

Regarding the importance of IFN-γ in cancer diagnostics, IFN-
γ-associated signatures have a predictive value in cancer immune 
phenotypes (81, 231, 232). In addition, IFN-related gene signa-
ture is a predictive marker for chemotherapy and radiotherapy 
efficiency for breast cancer (94) as well as to PD-1 or cytotoxic 
T lymphocyte antigen-4 (CTLA-4) blockade in various types of 
malignancies (233–235). Consistently, immunotherapy using 
immune checkpoint blockers (anti-CTLA-4 and/or anti-PD-1) 
combined with anticancer vaccines, clearly associate inhibition 
of tumor growth with increased proportion of IFN-γ-producing 
effector T cells (236, 237). This is also verified in clinical trials, 
through which the anti-CTLA-4 therapy was associated with an 
increase of IFN-γ-producing ICOS+ (inducible costimulatory) 
CD4 T cells and of T effector/Treg cell ratio in bladder cancer 
samples (238). In addition, PD-1 blockade was demonstrated 
to enhance T  cell infiltration by promoting IFN-γ-inducible 
chemokines (239). In other way, it was recently shown that 
IFN-γ-induced Treg cell fragility (loss of suppressive function) is 
required for response to anti-PD-1 therapy (240).

Altogether, the versatility of IFN-γ and its fine-tuned biologi-
cal effects highlight its relevance for therapeutic applications, 
and some clinical trials have already encouraging results. In fact, 
75% of metastatic melanoma patients were non-responders to 
anti-CTLA-4 therapy, and this was associated with genomic 
defects of IFN-γ signaling genes on tumors (241). Recently, 
apelin receptor (APLNR) was described to regulate JAK/
STAT signaling, modulating IFN-γ responses. Multiple loss-
of-function mutations in APLNR were identified in patient 
tumors refractory to immunotherapy (242). The inclusion of 
IFN-γ in the first-line treatment of ovarian cancer resulted in 
benefit regarding progression-free survival, with acceptable tox-
icity (243). IFN-γ treatment also appears to be effective against 
bladder tumors by recruitment and activation of intratumoral 
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leukocytes (244). In a phase I clinical trial, which combined 
adoptive T  cell therapy with intralesional administration of 
adenovirus expressing IFN-γ in metastatic melanoma, 38.5% of 
the patients had an overall objective response and 46% were able 
to control the disease (245).

iFN-γ-Mediated Mechanisms Underlying 
Protumorigenic effects
It is becoming increasingly clear that IFN-γ can exert certain 
effects supporting tumorigenesis. Immune evasion can operate 
through tumor cells losing responsive to IFN-γ signaling to 
avoid its antiproliferative, pro-apoptotic, and immunoregula-
tory actions. This has been demonstrated with the tumor cells 
losing the receptor for IFN-γ or a component of JAK/STAT 
signaling (12, 18). In addition, constitutive activation of inhibi-
tory molecules of this pathway, as SOCS1 and SOCS3, limits the 
actions of IFNs on human melanoma cells (246) and favors the 
activation of alternative signaling pathways, as STAT3, which 
is associated with tumor progression (247). These evidences 
suggest that tumor cells develop IFN-γ-dependent strategies 
to evade the immune system, leading to the emergence of very 
aggressive tumors, which are on the basis of immunoediting. In 
2011, Zaidi and Merlino proposed that IFN-γ actions might play 
a physiological role in protecting cells from damage in a setting of 
tissue remodeling and repair, while on cells harboring oncogenic 
mutations, the same mechanisms may prevent cell destruction 
and allow complete transformation (248). Consistent with this, 
NF-κB in tumor cells was shown to act as a protective mechanism 
against IFN-γ-induced necroptosis (203).

Indeed, there are significant evidences that tumor cells can 
take the advantage of IFN-γ as an inducer of anti-inflammatory 
responses and protumor effects. The first report of the negative 
potential effects was in 1987 by Taniguchi and colleagues who 
proposed that IFN-γ changes the metastatic ability of the B16 
melanoma cells in a cell-autonomous manner (249). Data from 
experiments using the CT26 colon carcinoma model showed 
that IFN-γ promotes tumor escape through the downregulation 
of the endogenous tumor antigen gp70 (250). IFN-γ expression 
by human melanoma samples was associated with enhanced 
expression of MHC class II molecules and the acquisition of a 
more aggressive phenotype (251, 252).

One of the principal mechanisms of tumor immune escape 
is the suppression of cytotoxic T cells and of NK cell-mediated 
immune responses. Brody and colleagues showed that IFN-γ 
upregulates IDO in melanoma cells and recruits Treg cells to 
avoid immune recognition (253). Curiously, IFN-γ induced IDO 
competence on human monocyte-derived DCs but had no effect 
on pro-inflammatory cytokine release, suggesting that IFN-γ 
triggers IDO activity and pro-inflammatory cytokine release 
as distinct cellular programs. In addition, IDO-competent DCs 
induced regulatory activity on allogeneic T cells (179). IFN-γ was 
also described to be involved in the accumulation of MDSCs in 
inflamed liver, which leads to T cell suppression (254). MDSCs 
producing nitric oxide decreased IFN-γ responsiveness of 
immune cells, such as T and NK cells (255).

One important aspect is the ability of IFN-γ to induce PD-L1 
expression in cancer, stromal and myeloid cells to impair effector 

tumor immunity (181). Abiko and colleagues demonstrated that 
the contact between tumor cells and CD8 T cells is necessary for 
the induction of PD-L1, underlying the importance of paracrine 
exposure to IFN-γ (256). Recent reports suggest that loss of IFN-γ 
pathway genes, such as JAK1 and JAK2, is associated with resist-
ance to anti-PD-1 therapy (257, 258). Prolonged IFN-γ signaling 
in tumors was also shown to coordinate PD-L1-dependent and 
PD-L1-independent resistance to immune checkpoint blockade 
and to other therapeutic combinations, such as radiation and 
anti-CTLA-4, through a multigenic resistance program (259). 
In addition, other inhibitory pathways are reinforced by IFN-γ, 
including CTLA-4 and CD86/CD80 interaction (260).

Interferon-gamma was used in clinical trials for melanoma 
but no significant improvement for patients was observed 
(261–264). In fact, IFN-γ treatment had no contribution to 
the outcomes of patients with metastatic renal cell carcinomas 
(265), leukemia (266), pancreatic carcinoma (267), breast can-
cer (268), or into the postoperative surgical therapy for colon 
cancer (269). Furthermore, a phase 3 trial of IFN-γ plus stand-
ard treatment with carboplatin/paclitaxel versus carboplatin or 
paclitaxel alone, for treated advanced ovarian tumors, was early 
terminated due to a higher incidence of serious hematological 
toxicities in patients receiving combined therapy compared with 
chemotherapy alone (270). The failed attempts to treat cancer 
patients with exogenous IFN-γ raised several concerns: the 
absence of tumor immunogenicity, the lack of IFN-γ-signaling 
components, the upregulation of IFN-γ signaling inhibitors, 
the immunosuppressive tumor microenvironment, the lack of 
effector T cells, or presence of anergic T cells and, in some cases 
toxicity. These accumulating evidences reinforce the importance 
to determine the grade of patients’ IFN-γ-responsiveness. For 
example, in cases with low IFN-γ actions, active immunization 
either via IFN-γ treatment or via adjuvants of the immune 
system, as toll-like receptor ligands, should be considered, as 
demonstrated recently by using bacterial outer membrane vesi-
cles that eradicate established tumors in an IFN-γ-dependent 
mechanism (271). The combination with radio- and chemo-
therapy is expected to be useful through immunogenic cell death 
that also elicits the innate immune system. Promising results 
were obtained with combination of low-dose 5-fluorouracil 
with recombinant interferon-gamma (IFN-γ) in patients with 
advanced hepatocellular carcinoma (272). In cases with high 
levels of IFN-γ signaling, the therapy with anti-PD-1/anti-PD-
L1 is expected to be important.

Overall, these findings indicate that the local immune 
microenvironment of tumors is complex and variable and that 
for an effective therapy it is essential to evaluate, individually, 
the immune profile of patients or immune contexture [reviewed 
in Ref. (232, 273)], taking into account that it may evolve and 
modify throughout the anticancer therapy (Figure 3).

iFN-γ iN THeRaPY—wHeRe aRe  
we aND wHeRe aRe we GOiNG?

Interferon-gamma therapy has ensued in clinical applications 
approved by the Food and Drug Administration in the treat-
ment of chronic granulomatous disease, in 1999 and severe 
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malignant osteopetrosis, in 2000. Despite the promising 
therapeutic applications of IFN-γ in several settings, its limited 
success in cancer-immunotherapy trials might be due to cancer 
cell unresponsiveness to this cytokine, the failure to deliver it 
locally or with the adequate periodicity to achieve a therapeutic 
effect. Moreover, IFN-γ clinical use has also been restricted 
due to several limitations inherent to its molecular properties. 
Essentially, these include stability problems, such as acid deg-
radation, and also the tendency to aggregate irreversibly under 
mild denaturing conditions, with subsequent loss of biological 
activity [the pharmacological aspect of IFN-γ is reviewed in 
Ref. (274, 275)]. Furthermore, IFN-γ is rapidly cleared from the 
blood when administered intravenously (276), requiring frequent 
re-administrations of high cytokine concentrations, to elicit an 
effective response at the target site, leading to systemic toxicity 
and side effects, such as fever, fatigue, nausea, vomiting, diarrhea, 

neurotoxicity, and leukopenia (277). These adverse effects are 
caused mainly by high serum concentration of the protein, due 
to an unequal distribution between body fluids and tissues (276) 
and, additionally, to the ubiquity of receptors which are expressed 
at the membrane of the majority of human cells (278, 279) and 
also to the existence of a circulating soluble form (which function 
remains elusive) (280).

These constraints in the clinical use of IFN-γ have encouraged 
the development of alternative delivery methods with the purpose 
of achieving higher therapeutic outcomes and, simultaneously, 
weaken its toxicity. Numerous reports have focused mainly on 
efficient routes of delivery rather than on systemic applications 
(281–287). In fact, IFN-γ is naturally produced in a paracrine 
manner, with local secretion and diffusion to the surrounding 
cells and microenvironment throughout the extracellular fluids 
(288). Therefore, a localized delivery of this cytokine has been 
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determined to be more appropriated in terms of therapeutic 
efficiency, due to its specific effect at the target site, while simul-
taneously intensifying the intended cytotoxic effects and immu-
nological stimulation (289). In particular, tumors can be rejected 
by local IFN-γ expression, but rejection of established tumors was 
less efficient over time, suggesting that timing of treatment plays 
a critical role, for transplanted tumors became less susceptible 
to local IFN-γ treatment the better they are established (206). 
Another relevant aspect concerns the mode of administration, 
being it an intermittent or sustained release. Several studies 
concluded that a sustained release strategy is more efficient by 
limiting the exposure of other cells and organs to the deleterious 
effects of high IFN-γ concentrations (290–295). In the particular 
case of cancer immunotherapy, consistent findings show that a 
stable and high concentration at the target site is required to elicit 
an effective response (288, 296), prompting several attempts to 
promote local delivery of IFN-γ with controlled release. These 
include liposomes, polymer gels, biodegradable microspheres, 
gene therapy, and magnetic or albumin nanoparticles (285, 
297–301). However, these strategies revealed unsuccessful by fail-
ing to maintain a stable and/or bioactive cytokine prior release, 
an inadequate release rate, a labor intensive and cost ineffective 
manufacture, and safety issues. Oncolytic viruses have gained 
interest for immunotherapy due to their ability to selectively 

destroy tumor cells and to their potential to stimulate antitumor 
immunity. Oncolytic vesicular stomatitis virus expressing IFN-γ 
demonstrated greater activation of DCs, higher pro-inflammatory 
cytokines’ secretion, and reduced tumor growth in 4T1 tumor 
model compared with the parental virus, suggesting that specific 
production of the IFN-γ within the tumor microenvironment is 
beneficial for the antitumor immune response (302). Recently, an 
IFN-γ-delivery system based on chitosan/poly(γ-glutamic acid) 
polyelectrolyte complexes was described by our group to suc-
cessfully decrease macrophage-derived stimulation of cancer cell 
invasion in vitro through the modulation of a pro-inflammatory 
macrophage phenotype (221). In fact, several efforts have been 
directed to educate APCs toward an immunostimulatory and 
antitumor phenotype (Figure 4) (303–306). In another work, a 
silk-based hydrogel was designed to regulate cytokine delivery for 
macrophages, which are actively involved in tissue remodeling 
and vascularization, with the aim to regulate the microenviron-
ment of biomedical implants (307). Other potential strategy to 
improve the shorter half-live of IFN-γ is fusing it with antibodies, 
enhancing its stability in the serum and tumor target specificity 
and reducing toxic side effects (308). Although promising results 
have been achieved with some of these strategies, the desired 
requirements are yet to be accomplished and need further 
investigation/development.

CONClUDiNG ReMaRKS

Herein, we discussed the role of IFN-γ on tumor immunity 
and its potential therapeutic implications. On one side IFN-γ 
appears as a promoter of tumor immune surveillance and on 
the other as a supporter of tumor escape. The outcome of IFN-γ 
signaling depends on the tumor-specific context, the magnitude 
of the signal, and the microenvironmental cues. Nevertheless, 
IFN-γ or IFN-γ inducers remain promising agents to include in 
combined therapies against cancer. We believe that the effective-
ness of future IFN-γ-based therapies will involve the develop-
ment of systems to deliver the appropriate amount of cytokine 
to target cells, minimizing its side effects. In addition, these 
strategies would profit from the combination with conventional 
treatments and with anti-PD-L1 and anti-CTLA-4 therapies to 
overcome the regulatory effects of IFN-γ. Another important 
issue is to consider a personalized approach, which takes into 
account the patient responsiveness to IFN-γ, by using predictive 
biomarkers, as IFNγR2, SOCS, APLNR, STAT1, or STAT3. Thus, 
a comprehensive understanding of the complex and variable 
tumor microenvironment, as well as a deeper evaluation of the 
immune, vascular and stromal profile, will be necessary for the 
stratification of cancer patients and for the establishment of 
efficient personalized therapies.
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FiGURe 4 | Modulation of antigen-presenting cells (APCs) profile as 
anticancer therapeutic strategies. The tumor microenvironment is frequently 
immunosuppressive with APCs functions compromised, and consequently 
with poor T cell response. As APCs can be modulated by microenvironmental 
signals, these cells are promising targets. Interferon-gamma (IFN-γ) and other 
molecules can be used to re-educate tumor-associated macrophages, 
frequently associated with anti-inflammatory status (M2-like) toward a 
pro-inflammatory and antitumor profile, while stimulating regulatory dendritic 
cells (DCs) to an immunostimulatory profile. This stimulation can potentiate 
effector T cell response and inhibit tumor progression.
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