SUPPLEMENTARY FIGURES AND TABLES

Epigenetic and transcriptional signatures of stable versus plastic differentiation of proinflammatory $\gamma \delta T$ cell subsets

Schmolka N, Serre K, Grosso A, Rei M, Pennington DJ, Gomes AQ, and Silva-Santos B

Supplementary Fig. 1. Histone modifications and transcription of *Ifng* and *Il17a* in $CD4^+$ T_H1 and T_H17 cell subsets. (a) RT-qPCR data for *Ifng* and *Il17a* expression (relative to *Actb*) on *in vitro*-generated (as described in Methods) $CD4^+$ T_H1 or T_H17 cells. (b) ChIP-seq plots for H3K4me2 (green) and H3K27me3 (black) modifications on *Ifng* and *Il17a* loci in CD4⁺ T_H1 or T_H17 cells. (c) Pair-plots comparing quantitative levels (log₁₀-transformed) of gene-specific H3K4me2 modifications between CD4⁺ T_H1 and T_H17 cells. Genes were grouped as: type 1 (red) or type 17 (blue) factors; alternative effector cell types; and housekeeping reference or survival genes.

Supplementary Fig. 2. Permissive histone H3K4me2 modifications in candidate genes on thymic and peripheral $\gamma\delta$ T cell subsets. Candidate genes (from Table 1) enriched for H3K4me2 modifications in CD27⁻ ($\gamma\delta^{27-}$) (a) or CD27⁺ ($\gamma\delta^{27+}$) (b) $\gamma\delta$ T cells were analyzed by ChIP-qPCR on populations FACS-sorted from pooled lymph nodes and spleen (LN/spl) or from the thymus. Data are normalized against total H3 (mean \pm SD).

Supplementary Fig. 3. Histone modifications and transcription of *Il17f* and *Il22* in $\gamma\delta$ T cell subsets. (a) ChIP-seq plots for H3K4me2 (green) and H3K27me3 (black) modifications on *Il17f* and *Il22* loci in peripheral CD27⁺ ($\gamma\delta^{27+}$) and CCR6⁺ CD27⁻ ($\gamma\delta^{27-}$) $\gamma\delta$ T cells. (b) ChIP-qPCR validation of H3K4me2 modifications on *Il17f* and *Il22* in peripheral $\gamma\delta^{27+}$ and $\gamma\delta^{27-}$ T cells (mean \pm SD). (c) ChIP-qPCR for H3Ac modifications on the *Il17f* promoter in peripheral $\gamma\delta^{27+}$ and $\gamma\delta^{27-}$ T cells (mean \pm SD). (d) RT-qPCR data for *Il17f* and *Il22* expression (relative to *Actb*) on populations derived from peripheral T cells: *ex vivo* CD4⁺, CD27⁺ ($\gamma\delta^{27+}$) and CCR6⁺ CD27⁻ ($\gamma\delta^{27-}$) $\gamma\delta$ cells; and *in vitro*-generated CD4⁺ T_H1 and T_H17 cells.

3

Supplementary Fig. 4. ChIP-qPCR validation of ChIP-seq data for H3K4me2 or H3K27me3 modifications on *Ifng* and *Il17a* loci in $\gamma\delta$ T cell subsets. Peripheral (**a**) or thymic (**b**) CD27⁺ ($\gamma\delta^{27+}$) and CCR6⁺ CD27⁻ ($\gamma\delta^{27-}$) $\gamma\delta$ T cells were analyzed by ChIP-qPCR for H3K4me2 and H3K27me3 modifications on *Ifng* (CNS-34 region) and *Il17a* (promoter or CNS+5 regions). Data are normalized against total H3 (mean ± SD).

Supplementary Fig. 5. Histone H3 methylation patterns for *ll1r1*, *ll23r* and *Ccr6* in γδ T cell subsets. (a) ChIP-seq plots for H3K4me2 (green) and H3K27me3 (black) modifications on *ll1r1*, *ll23r and Ccr6* loci in peripheral CD27⁺ (γδ²⁷⁺) or CCR6⁺ CD27⁻ (γδ²⁷⁻) γδ T cells. (b) RT-qPCR data for *ll23r* expression on populations derived from peripheral T cells: *ex vivo* CD4⁺, CD27⁺ (γδ²⁷⁺) and CCR6⁺ CD27⁻ (γδ²⁷⁻) γδ cells; and *in vitro*-generated CD4⁺ T_H1 and T_H17 cells. (c) RT-qPCR data for *ll23r* expression on thymocyte subsets: CD4⁻ CD8⁻ CD25⁺, double negative stages 2 and 3 (DN2-3) common progenitors; CD4⁺ CD8⁺ double positive (DP) and CD4⁺ single positive (SP) cells of the αβ T cell lineage; and CD25⁺ CD27⁺ (γδ²⁵⁺), CD25⁻ CD27⁺ (γδ²⁷⁺) and CD25⁻ CD27⁻ (γδ²⁷⁻) thymocytes of the γδ T cell lineage.

Supplementary Fig. 6. Histone H3K4me2 modifications on the *Ifng* promoter of $Tbx21^{-/-}$ $\gamma\delta$ T cell subsets. Peripheral CD27⁺ ($\gamma\delta^{27+}$) or CD27⁻ ($\gamma\delta^{27-}$) $\gamma\delta$ T cells from wild-type (WT) or *Tbx21*-deficient ($Tbx21^{-/-}$) mice were analyzed by ChIP-qPCR for H3K4me2 modifications on the *Ifng* promoter. Data are normalized against total H3 (mean \pm SD).

Supplementary Fig. 7. Analysis of effector $\gamma\delta$ T cell populations in $Tbx21^{-/-}$ and $Rorc^{-/-}$ mice. Flow cytometry data for surface CD27 and CCR6 expression (**a**,**c**); and intracellular IFN- γ and IL-17A cytokine production (**b**,**d**) in total $\gamma\delta$ T cells (**a**,**c**,**d**) or CD27⁺ $\gamma\delta$ T cells (**b**).

Supplementary Fig. 8. Maintenance of isolated $\gamma \delta^{27+}$ and $\gamma \delta^{27-}$ T cells in cytokinedefined culture media. $\gamma \delta^{27+}$ and $\gamma \delta^{27-}$ T cells were FACS-sorted from pooled spleen and lymph nodes from groups of 5 mice and stimulated for 48 hr in the presence of IL-1 β plus IL-23, or standard T_H1 or T_H17 conditions (as described in Methods). Graph indicates percentages of live cells after 48 hr of culture, as assessed by forward/ side scatter on flow cytometry analyses. Each dot represents an independent culture. Mann-Whitney two-tailed statistical differences are indicated as NS, non significant; *p<0.05; **p<0.01.

Supplementary Fig. 9. Cytokine production by peripheral lymphoid $\gamma\delta$ T cells in systemic acute responses to infection. Flow cytometry analysis of intracellular IFN- γ and IL-17A protein expression in total $\gamma\delta$ T cells isolated from the spleen and lymph nodes of C57BL/6 mice infected with the noted microorganisms (as described in Methods). Cells were stimulated for 4 hr with PMA and ionomycin before intracellular staining. Numbers adjacent to outlined areas indicate percentages of IFN- γ^+ , IFN- γ^+ IL-17⁺ or IL-17⁺ $\gamma\delta$ T cells.

SUPPLEMENTARY TABLE 1

Genes differentially modified by H3K4me2 or H3K27me3 marks between $\gamma \delta^{27+}$ and $\gamma \delta^{27-}$ T cells, or between CD4⁺ T_H1 and T_H17 cell subsets.

The annexed Excel file (**Supplementary Table 1.xls**) lists all genes with differential H3K4me2 and H3K27me3 marks between *ex vivo*-isolated $\gamma \delta^{27+}$ (gdCD27+) *versus* $\gamma \delta^{27-}$ (gdCD27-) T cells; or between *in vitro*-generated T_H1 *versus* T_H17 CD4⁺ populations. The ChIP-seq profiles of histone modifications were quantitatively analyzed using the bioinformatics tools (described in Methods). Only gene containing regions with a density fold-enrichment of 1.5 or above (for each comparison) are listed. The table contains gene symbol, transcript ID, chromosome start and end coordinates, gene region; gene ontology categories; and fold enrichment in the indicated population (relative to either gdCD27+ *versus* gdCD27- or T_H1 *versus* T_H17 comparisons).

SUPPLEMENTARY TABLE 2

Genes highly modified by H3K4me2 or H3K27me3 marks in $\gamma\delta$ T cell subsets

Histone	Gene	Fold	γδ	Histone	Fold	CD4	Histone Gene Fold γδ Histone Fold CD4
Mark	Symbol	Change	Subset	Mark	Change	Subset	Mark Symbol Change Subset Mark Change Subset
Ton	25 miccolla	2000					Outokinos
<u>тор</u> ка	Gsted	67.74	CD27	T			<u>Cytokines</u> K4 //5 20.17 CD27-
K4	Acvn2	61 71	CD27				K4 //21 16.81 CD27-
К4	Dock8	42.15	CD27	К27	13.57	Th17	K4 //17g 16.06 CD27- K4 11.89 Th1
К4	Pdzd2	42.15	CD27				K4 <i>ll17f</i> 13.25 CD27- K4 8.08 Th1
К4	Wwox	37.63	CD27	К27	10.89	Th17	K4 //22 10.54 CD27-
				K27	10.87	Th1	
				К4	9.72	Th17	Signal Transduction
К4	Pla2g2d	37.46	CD27	-			K4 Tnk2 24.33 CD27-
К4	Clip1	37.20	CD27+				K4 Brca1 20.07 CD27-
K4	Dkk3	34.62	CD27				K27 Pde3b 16.75 CD27- K27 30.16 Th1
К4	Kcnq5	33.12	CD27	K27	9.97	Th17	K4 Prkca 15.05 CD27- K4 46.33 Th1
К4	Ррр1г14с	33.12	CD27	K2/	10.39	TF12	K4 11am1 14.62 CD27- K27 15.08 In1
KA.	Sain1	20.10	CD27	K4	15.97	1017	K4 PS0 15.55 CD27-
к4 кл	391μ1 7n1	30.10	CD27				K4 = Wisp1 = 13.35 = U027
K4 KA	Lpi Hiven1	28.60	CD27				K4 Typl1 12.04 CD27-
К4	SIc17a4	28.60	CD27				K4 Bajan2/1 11.83 CD27- K27 12.57 Th1
к4	Dcn1h	27.90	CD27+				K4 Dank1 11.21 CD27+
К4	Crmp1	27.05	CD27				K4 Fad3 11.14 CD27- K4 8.76 Th1
К4	Psme4	27.09	CD27				K4 Gpsm2 11.04 CD27-
К4	Ptk2	27.09	CD27				K4 Irak3 11.04 CD27-
К4	Reps2	27.09	CD27	-			K4 Sh3gl3 11.04 CD27-
К4	Sntb2	27.09	CD27	К27	15.08	Th17	K27 Gna15 11.02 CD27+ K27 8.01 Th1
К4	Zranb3	27.09	CD27				K27 Pde8b 10.61 CD27+
К4	Eif4g3	26.34	CD27	-			K4 Mapk10 10.24 CD27- K4 9.45 Th1
K4	Myom1	25.59	CD27	-			K4 Cradd 10.16 CD27- K27 18.85 Th1
К4	Zfp408	25.25	CD27+				K4 Bcar3 10.03 CD27- K27 11.31 Th1
К4	Cdon	25.09	CD27	-			K27 Bre 9.79 CD27+
							K4 Rasgrp3 9.78 CD27-
<u>R</u>	eceptor Act	ivity					K4 Camk4 9.03 CD27-
К4	Trpm6	45.16	CD27	K27	16.97	Th17	K4 Nedd9 9.03 CD27-
К4	Nrp2	37.20	CD27+		2010 1000		K4 Camk2g 8.66 CD27- K27 10.44 Th1
К4	ll1r1	33.12	CD27	K4	10.69	Th17	K4 Rhot1 8.53 CD27-
К4	ll17rd	28.60	CD27	K27	15.08	Th17	K4 Pik3ca 8.43 CD27-
K4	NTRZ	24.91	CD27+	KZ/	16.97	1017	K4 EIMOI 8.11 CD27-
K4	FUIL Durl1	21.92			25.50	Th17	I
K4 K4	PVIII Ptnrn2	20.57	CD27	N2/	16.02	1017	Transcription Factor Activity
к4	Irm2	17.23	CD27				K4 Zhth38 31.61 CD27-
К4	Gpr160	16.86	CD27				K4 Tshz2 21.26 CD27+ K27 20.74 Th1
К4	Grik1	16.18	CD27	К27	16.34	Th17	K4 Stat5b 18.06 CD27-
К4	Gpr174	15.81	CD27				K27 Satb1 14.70 CD27-
К4	ltpr1	15.81	CD27	K27	25.14	Th17	K4 Arnt2 14.30 CD27-
К4	Scarf1	14.30	CD27	K27	11.85	Th17	K27 Mef2c 13.47 CD27+
К4	Ramp1	13.80	CD27	-			K4 Mllt10 12.54 CD27-
К4	Ccr6	13.76	CD27	-			K4 Dlx3 12.29 CD27+
K4	Xpr1	13.55	CD27	-			K4 Gabpb2 11.67 CD27-
К4	Ccr1	12.26	CD27				K4 Vdr 11.18 CD27-
К4	Ryk	11.44	CD27	-			K4 Atf6 11.04 CD27-
К4	Ptprm	10.63	CD27+	K27	14.61	Th17	K4 Runx2 10.54 CD27-
К4	Tnfrsf4	10.35	CD27		100 - 2010		K4 Tcf7l1 10.54 CD27-
К4	Vipr2	10.11	CD27	K4	9.93	Th17	K4 Pbx1 10.16 CD27- K27 25.77 Th1
К4	Grik2	9.78	CD27	K27	12.57	Th17	K4 Pbx3 10.16 CD27- K27 25.77 Th1
К4	Sorl1	9.78	CD27	-			K27 Clock 9.38 CD27+
К4	NCOA7	9.53	CD27				K4 LCOY 9.03 CD27-
K4	Stabl	9.53	CD27				K4 KOrd 9.03 CD27- K27 20.16 MI
K4	Igj1r	9.46	CD27				KZ7 15.08 INI KA 11.70 Th
K4	FILI Cdaa	9.43	CD27+				K4 11.70 IN1
K4	Cu44 Gpr00	9.41	(D27				K4 Forn2 0.20 CD27
K4	Slamf1	0.41	(D27				KA Arnti 8.28 (D27-
K27	Dner	9.20	CD27+	K77	10.10	Th17	NT 000 0.20 CD2/*
K4	Ptpra	9.11	CD27		10.10		K4 Nfatc2 8.28 CD27-
К27	Grm7	2.05 8 98	CD27+	K27	33 94	Th17	
К4	Ptpn5	8.97	CD27+		55.54	/	
К4	ll1r2	8.72	CD27	K27	10.77	Th17	
К4	Sema6a	8.60	CD27		10.77		
К4	Ephb2	8.35	CD27+	1			
К4	Mtus1	8.28	CD27	К27	11.92	Th17	
К4	ll23r	8.03	CD27	-			

Selection of 120 genes highly differentially modified by H3K4me2 (K4) or H3K27me3 (K27) marks between CD27⁺ and CD27⁻ $\gamma\delta$ T cell subsets. From the full list of differentially modified gene regions (**Supplementary Table 1**), a cut-off of 8-fold difference between CD27⁺ and CD27⁻ $\gamma\delta$ T cells was used to select various candidates: the top 25 (miscellaneous) and genes belonging to particular functional categories of interest: receptor activity, cytokines, signal transduction and transcription factor activity. Differences above the 8-fold cut-off are also indicated for CD4⁺ T_H1 and T_H17 cells. Details about coordinates of enriched regions within each gene are provided in Supplementary Table 1.

SUPPLEMENTARY TABLE 3

List of primers used for ChIP-qPCR analyses

Primer name	FWD primer (5'-3')	REV primer (5'-3')
Ifng Promoter	CGAGGAGCCTTCGATCAGGT	GGTCAGCCGATGGCAGCTA
Ifng CNS-34	TGCTTTCTCCCCTGTCTCAATTAT	ACACACACACACCCTTTCTTCATT
Il17a Promoter	GAACTTCTGCCCTTCCCATCT	CAGCACAGAACCACCCCTTT
Il17a CNS+5	AGGCCCACAATGTAGGTCAG	CAGGCTGGGAAGTCTCTCTG
Il17f Promoter	ACTGCATGACCCGAAAGCA	TTTAATTCCCCCACAAAGCAA
Rorc	TCCAATACCTTGGCCAAAAC	CTTTGCCTCGTTCTGGACTATAC
Eomes	TGGAGATATTCTGTCCACTTCG	TCAGGGTTTTTCCTTAAGTGTG
Tbx21	GGGAACCGCTTATATGTCCA	GAGCTTTAGCTTCCCAAATGAA
1122	TCCCTTATGGGGGACTTTGG	GGAAGTTGGACACCTCAAGC
Dock 8	CCTCTACCAATGGCATTTTCC	ACACAAGGCTCTGTTGTAGCC
Dkk3	CAGAGCGAAACTCAAAACAGC	GCCCAGAATAACCTCAAACTTGT
Scarf1	GCTTTTCCCCATTGTGAGAC	GGTTATTTATTGCACTGGTCACCT
Ephb2	CGCAGCAGTGGTCTCTCC	TGAGAAACATTTGGGCTGAA
Slamf1	ACTGGACCCTTATATTGTTTGAACTT	GTCATGTTCTTACAACTTCATCTCATT
Flt1	CAGCGCGTAAGGCAAGAC	GCCAAGCAGAAGCAGGAG
Tnfrsf4	TCTCCAGGGCTATCTGACCA	CCTCCTGGCCTCTCCTCTAA
Ccr1	CGATAACAAATTCCTCAATATCACTG	TTGGGAAATGATGACAATGC