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NF-jB1-dependent signaling directs the development of CD41 Th2 cells during allergic

airway inflammation and protective responses to helminth infection. Here, we show that

IL-4 and IL-13 production is NF-jB1-dependent in mouse OVA-specific CD41 (OTII) T cells

responding to alum-precipitated OVA (alumOVA) immunization. More surprisingly, we

found that NF-jB1 deficiency in OTII cells also selectively impairs their CXCR5 induction

by alumOVA without affecting upregulation of BCL6, IL-21, OX40 and CXCR4 mRNA and

PD-1 protein. This results in functional impairment of follicular helper T cells. Thus, fewer

germinal center B cells develop in LN responses to alumOVA in T-cell-deficient mice

reconstituted with NF-jB1�/� OTII cells as opposed to NF-jB11/1 OTII cells, while plasma

cell numbers are comparable. Unlike CXCR5 induction in CD41 T cells, NF-jB1-deficient

recirculating follicular B cells are shown to express normal levels of CXCR5. The selective

effects of NF-jB1-deficiency on Th2 and follicular helper T cell induction do not appear to

be due to altered expression of the Th2-associated transcription factors — GATA-3, c-Maf

and Ikaros. Altogether, these results suggest that NF-jB1 regulates the expression of

CXCR5 on CD41 T cells primed in vivo, and thus selectively controls the T-cell-dependent

germinal center component of B-cell response to alumOVA.
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Introduction

Antigen-specific T-cell help for B cells is essential for both extra-

follicular and follicular responses to most protein-based antigens.

These antigens include alum-precipitated proteins, which are

commonly used in vaccine formulations. Alum-precipitated OVA

(alumOVA) causes OVA-specific CD41 T cells to develop into Th2

cells that help induce extrafollicular plasmablasts and GCs, and

can direct Ig class switching to IgG1 [1–3]. Follicular helper

T (TFh) cells are also produced in response to alumOVA and

these are required for selection of B cells in GCs and for inducing

the selected B cells to differentiate into plasma cells, memory

B cells or centroblasts. TFh cells can also induce GC B cells to

switch Ig class [4].

A proportion of both TFh cells and Th2 cells generated in the

response to alumOVA produce IL-4. This Th2-cytokine, together
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with IL-13 and IL-5, has pleiotropic roles and can provide

protection against parasitic infections, but can also play a

pathogenic role in atopic diseases [5]. The signaling pathway

inducing IL-4 in this response in vivo remains unclear. This

contrasts with the detailed knowledge of the IL-4 and STAT6-

dependent pathway for Th2 cytokine induction in vitro when

T cells are activated through the TCR in the presence of IL-4 [5].

The induction of Th2 cytokines in vivo in the absence of IL-4 or

STAT6 signaling [2, 6–8] indicates that alternative pathways

operate in vivo in Th2 induction.

In mammals, the NF-kB family is composed of five related

transcription factors: NF-kB1 (p50), NF-kB2 (p52), RelA, c-Rel

and RelB [9]. These combine with each other to form a range of

heterodimers that have both overlapping and distinct functions.

There is evidence that NF-kB1 is involved in the induction of Th2

responses in vivo and in Th2-associated protective and pathologic

responses. Thus, NF-kB1-deficient mice show increased suscept-

ibility to intestinal helminth infection and resistance to experi-

mental allergic airway inflammation [10–14]. There is some

uncertainty about the way this operates in these conditions. In

responses of NF-kB1-deficient mice to alum-precipitated protein

in vivo, IL-5 induction was severely reduced, while IL-4 levels

were not compromised [13]. The cellular basis for this requires

study for, at least in part, NF-kB1 may act through non-T cells in

these responses. Thus, NF-kB1 in DCs is needed for optimal CD41

Th2 cell differentiation [14]. For these reasons this report

specifically addresses the effect of NF-kB1 deficiency in trans-

genic OVA-specific naı̈ve CD4
1

T cells (OTII cells) in responses to

alumOVA in vivo. It shows there are distinct NF-kB1-dependent

and NF-kB1-independent pathways to Th2 cytokine induction

and describes selective roles for NF-kB1 on Th2 and TFh differ-

entiation.

Results

Th2-cytokine induction is impaired in NF-jB1�/� OTII
cell responses to alumOVA

First, we assessed the effect of NF-kB1 deficiency on Th2 and TFh

cell induction by alumOVA. Naı̈ve NF-kB11/1 OTII cells or NF-

kB1�/� OTII cells were labeled with the vital fluorescent dye

CFSE and transferred into groups of WT congenic C57BL/6 mice.

NF-kB1 deficiency did not affect the survival of OTII cells over 4

days in non-immunized chimeras (Fig. 1A). Immunization 24 h

after cell transfer with alumOVA in both rear footpads induced

proliferation in both NF-kB11/1 and NF-kB1�/� OTII cells in the

draining popliteal LN. This is shown by CFSE dilution in Fig. 1A

and B. However, NF-kB1�/� OTII cells divided less frequently and

were outnumbered 14-fold by NF-kB11/1OTII cells after 3 days.

This is in line with the proposed roles for NF-kB1 both in

proliferation and survival of T lymphocytes responding to antigen

[15–17].

The Th2 cytokine response was evaluated 3 days after

immunization. By this stage the NF-kB11/1 OTII cells’ median

mRNA level for IL-4 was 300 times and IL-13 was 170 times those

of the largely non-responding endogenous CD41 T cells (Fig. 1C).

By contrast, NF-kB1
�/�

OTII cells expressed a median of only 20

times the IL-4 mRNA of endogenous CD41 T cells and failed to

induce IL-13 mRNA. We confirmed that IL-5 mRNA is not induced

in CD4
1

T cells responding to alumOVA in LNs [18, 19]. The

failure of NF-kB1�/� OTII to upregulate Th2 cytokines was

selective as IL-2 mRNA (Fig. 1C), as well as the Th1-features —

IFN-g and T-bet – (Supporting Information Fig. 1A) were still

induced at similar levels in both NF-kB11/1 and NF-kB1�/� OTII

cells.

The role of NF-kB1 in TFh development was first assessed by

quantifying mRNA for IL-21 and the receptor CXCR5. CXCR5

directs recirculating B cells and TFh cells to follicles by recog-

nizing the chemokine CXCL13 secreted by follicular DCs and

stromal cells [20, 21]. The median level of IL-21 mRNA in NF-

kB1�/� OTII cells was only 2.5-fold below that in NF-kB11/1

OTII cells but 60 times that of largely non-responding endogen-

ous CD41 T cells (Fig. 1C). By contrast, while CXCR5 mRNA was

strongly induced in NF-kB1
1/1

OTII cells it was not significantly

induced in NF-kB1�/� OTII cells (Fig. 1C). The changes in other

mRNAs associated with TFh formation are not impaired —

including upregulation of CXCR4 and OX40 as well as down-

regulation of CCR7 (Supporting Information Fig. 1A). There is

also a defect in upregulating CXCR5 protein in NF-kB1�/� OTII

cells, at 3 days post immunization, when responding OTII cells

first colonize follicles [22] (Supporting Information Fig. 1B). By

contrast, the upregulation of PD-1, another TFh marker [21], is

not affected by this deficiency. Thus, we confirm that during in

vivo responses to alumOVA, NF-kB1�/� OTII cells have selectively

impaired early Th2-differentiation into IL-4/IL-13-expressing

cells, and show partial failure of TFh maturation by not up-

regulating CXCR5. Further analysis of the effect of NF-kB1 defi-

ciency in CD41 T cells on TFh development and follicular anti-

body responses is presented later in the results.

NF-jB1 is redundant for IL-4-directed Th2 polarization
in vitro

Having confirmed a key role for NF-kB1 in Th2-cytokine induction

by alumOVA in vivo, we assessed whether CD41 T cells require

endogenous NF-kB1 for IL-4-guided production of Th2-cytokines

in vitro. Previous in vitro studies report that NF-kB1
�/�

CD41 T

cells cultured under Th2 polarizing conditions or WT CD4
1

T cells

with the NF-kB1 inhibitor — SN50 — have markedly impaired IL-

13 and IL-5 production, with a smaller effect on IL-4 induction

[11, 13]. We cultured FACS-sorted polyclonal CD41 T cells from

WT and NF-kB1�/� mice with plate-bound anti-CD3 and CD28

in the presence of IL-4, neutralizing anti-IFN-g and anti-IL-12.

After 5 days NF-kB1�/� CD41 T cells had been induced to

produce IL-4, IL-13 and IL-5 proteins at similar levels to those of

WT CD4
1

T cells (Fig. 2A and top graph). Equally, IL-4, IL-13, IL-5

and IL-21 mRNA were upregulated independently of NF-kB1 in

this in vitro response (Fig. 2B).
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Why are our results on the effects of NF-kB1 deficiency in

vitro at variance with those of Das et al. [11]? A possible

explanation is the role of NF-kB1 in CD4 T-cell proliferation

and/or survival after in vitro stimulation through CD3 and

CD28 [16, 17]. Thus, while we performed intracellular FACS

staining on day 5 to detect cytokine production, Das et al.

harvested the cultured cells at day 5 and then restimulated

these for a further 3 days before measuring cytokine secretion

by ELISA on day 8. This longer culture period may have resulted

in many cells undergoing apoptosis. We found no obvious

loss in NF-kB1�/� CD41 T cells compared with WT CD41 T cells

during in vitro differentiation over 5 days (Fig. 2A bottom

graph).

Th2 transcription factor expression in NF-jB1�/� OTII
cells responding to alumOVA

To probe the selective impairment of Th2 and TFh development

in NF-kB1�/� OTII cells we studied the requirement of

NF-kB1 for the early expression of Th2- and TFh-associated

transcription factors. This was done in NF-kB11/1 OTII and

NF-kB1�/� OTII cells 3 days after immunization with alumOVA.

While GATA-3 is essential for the differentiation and main-

tenance of Th2 cells [23], c-Maf directly regulates IL-4 production

[24]. In addition, there is evidence that Ikaros regulates

Th2-cytokines as well as the expression of GATA-3 and c-Maf

mRNA [25]. As expected, NF-kB1 mRNA is not induced in
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Figure 1. In vivo Th2 cytokine induction in CD41 T cells by alumOVA requires NF-kB1. (A) C57BL/6 mice received CFSE-labeled NF-kB11/1 OTII or
NF-kB1�/� OTII cells and were then immunized with alumOVA in both footpads. Three days later, proliferation in the CFSE1CD41 gated population
of OTII cells from the draining popliteal LN was assessed by CFSE dilution. Non-immunized (NI) chimeric mice were used as controls. The
percentages of draining LN cells, which are OTII cells (top graph), and the numbers of OTII cells in the LN (bottom graph) are shown for NF-kB11/1

chimeras (black circles) and NF-kB1�/� chimeras (open circles). Horizontal bars indicate median values. The numbers in the graphs indicate the
fold differences between two immunized groups. (B) Graphs show the percentages of NF-kB11/1 OTII (upper graph) or NF-kB1�/� OTII (lower graph)
cells as a function of the numbers of divisions accomplished. The results are from two independent experiments. Each line represents the results
from one mouse. (C) In vivo-primed NF-kB11/1 OTII (black circles) or NF-kB1�/� OTII (open circles) cells in the CFSE1CD4 T-cell gate (shown in A)
were FACS-sorted. Largely non-activated endogenous CFSE–CD4 cells served as control (black diamonds). The relative cytokine or chemokine
receptor mRNA levels were determined by real-time RT-PCR relative to b2-microglobulin mRNA. Each symbol represents sorted cells pooled from
the two popliteal LNs of one mouse. The data were normalized by setting the median of the results obtained for endogenous WT CD41 T cells as 1.
Data are derived from two independent experiments with a total of eight mice in each group. Mann–Whitney two-tailed statistical differences
between bracketed groups are indicated; NS 5 non significant, �po0.05, ��po0.01, ���po0.001.
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NF-kB1�/� OTII cells (Fig. 3A). There was a non-significant

trend for GATA-3 to be lower, while c-Maf levels were

two-fold lower (po0.05) in the NF-kB1�/� OTII cells, but Ikaros

mRNA induction was not obviously affected by the absence of

NF-kB1.

The transcription factor BCL6 is required selectively for the

generation of the TFh cells [26–28]. This distinguishes TFh from

the other Th subsets — Th1, Th2 and Th17 — which respectively

require transcriptional control from T-bet, GATA-3 and ROR-gT

for their induction. BCL6 has been shown to repress the expres-

sion of many microRNAs predicted to control the TFh cell

signature and in particular miR-17-92, which represses CXCR5

expression [26]. In striking contrast to the loss of CXCR5 up-

regulation (Fig. 1C), no major difference was seen in the levels of

BCL6 mRNA induced in NF-kB11/1 compared with NF-kB1�/�

OTII cells (Fig. 3A).

The transcription factor expression during Th2-cyto-
kine induction in vivo differs from that in vitro

Transcription factor upregulation during the in vivo response to

alumOVA described above (Fig. 3A) is strikingly more complex

than that induced during the in vitro IL-4-directed Th2 cytokine

induction (Fig. 3B). Only GATA-3 upregulation is comparable in

the two responses, while the levels of NF-kB1, c-Maf, Ikaros and

BCL6 are either not increased or fall during the in vitro response

(Fig. 3B). This is in keeping with the present study showing that

NF-kB1 is not needed for the in vitro induction of Th2 cytokines

(Fig. 2). Finally, no difference was detected between WT and

NF-kB1�/� CD41 T cells in the expression of transcription factors

in the in vitro response (Fig. 3B).

NF-jB1 affects CXCR5 protein expression by TFh cells
but not by follicular B cells

The finding that NF-kB1 is required for the upregulation of

CXCR5 mRNA in OTII cells responding in vivo to alumOVA led us

to test whether NF-kB1�/� OTII cells were impaired in their

differentiation into TFh cells. To achieve this, CFSE-labeled

CD45.21 NF-kB11/1 or NF-kB1�/� OTII cells were transferred

into congenic CD45.11 WT recipients and the chimeras were

immunized in both footpads with alumOVA. Seven days after

immunization NF-kB11/1 or NF-kB1�/� OTII cells from the

draining popliteal LN were analyzed for proliferation and

phenotype. By this time multiple divisions in many OTII cells

had caused loss of detectable CFSE content; consequently CD45

allotypes were used to discriminate between donor and host cells.

Again both NF-kB11/1 and NF-kB1�/� OTII cells had divided

although NF-kB1�/� OTII cells had consistently accomplished

fewer rounds of division (Fig. 4A and B) and the median number

of NF-kB11/1 OTII cells was 4.7 times that of NF-kB1�/� OTII

cells (Fig. 4A).

While significant this difference is relatively modest compared

to the marked reduction caused by NF-kB1 deficiency in the

numbers of OTII cells acquiring TFh features. The median

number of induced CXCR51PD-11 cells was 36 times greater for

NF-kB11/1 OTII than for NF-kB1�/� OTII cells (Fig. 4C). Thus,

the absence of NF-kB1 selectively impairs the capacity of CD4
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T cells responding to alumOVA to differentiate into CXCR51

PD-11 TFh cells. This manifests as a functional defect identified

by immunohistology on LNs of chimeras 7 days into a response to

alumOVA. While in NF-kB11/1 OTII chimeras a median of 74% of

CD3 T cells in secondary follicles were OTII cells in NF-kB1�/�

OTII chimeras a median of 31% of CD3 T cells were OTII cells

(Fig. 4D). Finally, we tested whether NF-kB1 deficiency causes

reduced CXCR5 expression on follicular B cells. The data in

Supporting Information Fig. 2 confirm that CXCR5 is equally

expressed on WT and NF-kB1-deficient follicular B cells. This

further emphasizes the selectivity of the effect of NF-kB1 defi-

ciency on CXCR5 expression in TFh cells.

NF-jB1�/� OTII cells are partially defective in providing
help to B cells in vivo

We next questioned the functional consequences of the T-cell-

specific loss of NF-kB1 on their capacity to provide help to B cells

in response to (4-hydroxy-3-nitrophenyl) acetyl conjugated to

OVA (NP-OVA) as an alum precipitate (alum NP-OVA). This was

assessed by quantifying the numbers of GC B cells and plasma

cells at 9 days after immunizing OTII cell chimeras, a time when

follicular and extrafollicular responses are fully established [3].

Endogenous OVA-specific CD41 T cells among normal polyclonal

CD41 T cells can mask the direct effect of NF-kB1�/� OTII cells

by inducing GC in response to alumOVA. Consequently, B-cell

responses helped by NF-kB11/1 or NF-kB1�/� OTII cells were

studied in TCRbd-deficient mice, which do not have endogenous

T cells.

First, the B2201Fas1GL71 GC B-cell response was assessed 9

days after immunization. This showed that NF-kB1�/� OTII cells

had induced some B2201Fas1GL71 GC B cells, with a tenfold

higher median percentage and 80-fold greater median absolute

number of B2201Fas1GL71 GC B cells in the draining popliteal

LN than in distant non-responding brachial LN (Fig. 5A left hand

graphs). Nevertheless, median percentage of B2201Fas1GL71 GC

B cells was a 20th and the median absolute number a 13th in

TCRbd-deficient chimeras created with NF-kB1�/� OTII cells

compared with those receiving NF-kB11/1 OTII cells. Our

previously published studies make it unlikely that the defect in

the GC B-cell response 7 days after immunization depends on

impaired IL-4-production by NF-kB1�/� OTII cells. These studies

show that GCs are induced normally in mice that lack IL-4

signaling, although these GCs regress more quickly than in WT

mice [2, 7]. Importantly, the differences in the percentages and

numbers of GC B cells cannot be solely attributed to the

percentages and total numbers of NF-kB11/1 or NF-kB1�/� OTII

cells, for both cell types survived similarly in the TCRbd-deficient

recipient mice (Fig. 5B). Consistent with Fig. 4C, there are 30

times fewer CXCR51PD-11 TFh cells generated from NF-kB1�/�

than NF-kB11/1 OTII cells (Fig. 5B). The effects of T-cell-specific

loss of NF-kB1 on the B-cell response was selective to GC B cells

since the numbers of CD1381 antibody forming cells in the

popliteal LN of chimeras created with NF-kB1�/� OTII cells were

comparable to those in the NF-kB11/1 OTII cell chimeras (Fig. 5A

right-hand graphs). This is consistent with a previous report that

CXCR5-deficient T cells support early T–B cell collaboration and

plasma cell formation but are impaired in supporting normal

GC development [21]. In addition, we have shown that both

NF-kB11/1 and NF-kB1�/� OTII cells induce class switch to IgG

(Supporting Information Fig. 3A). In both the switching is largely

to IgG1, which is typical for the response to alumOVA

(Supporting Information Fig. 3B). Collectively these results

indicate that NF-kB1 is important for the expression of CXCR5 on

TFh cells primed in vivo, and the impairment of CXCR5 up-

regulation selectively impairs the GC component of B-cell

responses to alumOVA.
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Discussion

We show here that when CD41 T cells that lack NF-kB1 are

primed with alum-precipitated protein in a NF-kB1-sufficient

microenvironment they are impaired in the upregulation

of the Th2-cytokines IL-4 and IL-13. In addition, their TFh cells

have impaired CXCR5 expression resulting in significantly

reduced GC responses. This indicates that there is a CD4 T-cell-

intrinsic role for NF-kB1 in promoting the Th2/TFh differentia-

tion program. The lack of CXCR5 is a selective defect, for

upregulation of other TFh features – BCL6, IL-21, CXCR4, OX40

mRNA and PD-1 protein — in NF-kB1
�/�

OTII cells is not

impaired.

Here, we observe defects in CXCR5 and IL-4 upregulation as

early as 3 days after immunization. By this time some CD41 T

cells have started to colonize the B-cell follicles, although GCs

have not yet formed [22]. When during the first 3 days after

immunization does signaling through NF-kB1 in CD4
1

T cells

become important for TFh commitment? In T cells, NF-kB1 is

activated by both TCR and CD28 engagement, through homo-

dimerization or heterodimerization with RelA or cRel, and

regulates IL-2 expression, cell cycle entry and survival of T cells

[29, 30]. Our results show no difference in IL-2 mRNA upregu-

lation in NF-kB1�/� compared with NF-kB11/1 OTII cells,

although NF-kB1 upregulation starts when CD41 T cells first

interact with DCs in the outer T cell zone. It has been shown that
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activation of NF-kB1 by OX40 contributes to CD4 T-cell expan-

sion and survival [17]. We have previously shown that OX40 is

upregulated on a proportion of OTII cells early in response to

alumOVA, before they start to divide [19]. This is of interest, for

several studies have reported that OX40 signaling also directs Th2

differentiation [31–35]. For instance, OX40 signaling increases

GATA-3 and c-Maf in T cells cultured with DCs stimulated with

thymic stromal lymphopoietin [36]. OX40 also plays a part in GC

maintenance by triggering upregulation of CXCR5 [35, 37, 38]. It

would be of interest to probe a possible role of NF-kB1 in the

induction of CXCR5 by OX40.

Because each member of the NF-kB family, except for RelB,

can form homodimers as well as heterodimers with one another,

it is difficult to distinguish between a direct and indirect role for

NF-kB1. Thus, NF-kB1(p50) [13] and c-Rel [12], which can

combine to form heterodimers, are implicated in the pathogen-

esis of asthma. RelA(p65) also forms heterodimers with NF-kB1

and binds to the Il-4 promoter [39]. The deficiency in Th2-cyto-

kine induction in vivo might also reflect the lower levels of c-Maf

mRNA found in primed NF-kB1�/� OTII cells.

During Th2 T-dependent antibody responses IL-4-producing

CD41 T cells first accumulate in the outer T zone close to the B-

cell follicles and, later, to the GC [40–42]. Thus,

CXCR5
high

CCR7low T cells have been found to express PD-1

strongly along with elevated IL-4 transcripts using the IL-4-GFP

reporter mice [21]. This goes along with the observation that GCs

are a major focus of IL-4 production during Th2 responses

[40–42]. It is of particular interest that NF-kB1-deficient CD41 T

cells show a phenotype close to CXCR5-deficient CD4
1

T cells

[21]. Both cell types induce normal day 7 T-cell-mediated anti-

body responses but impaired GC responses, findings that corre-

late with reduced numbers of TFh cells reaching secondary B-cell

follicles. Our results also show that both CXCR5 and IL-4 upre-

gulation are impaired in NF-kB1�/� CD41 T cells. It would be

interesting to test if the reduced production of IL-4 is in part

secondary to the defective expression of CXCR5 preventing

primed T cells from reaching a specific microenvironment within

GC that promotes IL-4 production by TFh cells.

Within the TFh cell population a GC-TFh subset has recently

been identified based on the expression of CXCR51PD-11GL-71

as the critical source of IL-4 in response to alum-precipitated

proteins [43]. Surprisingly, this GC-TFh subset is not restricted to

Th2 responses. LCMV infection induces a strongly Th1-biased

response, but IL-4 expression still occurs within a population of

GC CD41 T cells expressing CXCR5
1

PD-11GL-71. In addition,

SLAM (Signaling Lymphocytic Activation Molecule, CD150), a

surface receptor that uses SAP (SLAM-Associated Protein)

signaling, is specifically required for IL-4 production by this GC

TFh cell subset [43]. Intriguingly, SLAM/CD150 engagement

increases nuclear NF-kB1 levels and IL-4 production in a SAP-

dependent fashion [44]. Hence, NF-kB1 may also be a direct

target of the CD150/SAP signaling pathway that leads to IL-4

production within GC. These studies collectively highlight the

functional significance of NF-kB1 in CD41 T cells during

responses to alum-precipitated proteins.

Materials and methods

Mice

C57BL/6J mice were from HO Harlan OLAC (Bicester, UK).

Congenic OTII mice, transgenic for abTCR specific for 323–339

OVA-peptide in the context of H-2 I-Ab (Charles River, L’Arbresle,

France), were crossed to NF-kB1�/� mice [45] that had been

previously backcrossed on C57BL/6 for more than ten genera-

tions. TCRbd-deficient mice and BoyJ (CD45.1 congenic back-

ground) mice were obtained from The Jackson Laboratory (Bar

Harbor, Maine) and maintained in-house. All experiments

with mice were conducted following local and Home Office

regulations.

T-cell adoptive transfer and immunization

CD41 T cells from LNs of NF-kB1
1/1

OTII or NF-kB1�/� OTII mice

were purified using anti-CD4 MACS microbeads (Miltenyi Biotec,

UK), labeled with CFSE (Cambridge Bioscience, UK); and 4�106

cells were injected i.v. into WT congenic recipients. One day later

these mice were immunized in both footpads with alumOVA or

alumNP-OVA as in [3,18, 22].

Flow cytometry and FACS

Draining popliteal LNs were prepared as in [18, 22]. Antibodies

against B220- PerCP-Cy5.5 (RA3-6B2), CD4-PerCP-Cy5.5 (RM4-5),

CD45.2-PE (104), CD45.2-PE-Cy5.5 (104), CD138-PE (281-2), GL7-

FITC (GL7), PD-1-PE (J43), biotinylated anti-Fas (Jo2), biotinylated

anti-CXCR5 (2G8) and streptavidin-APCs were from PharMingen

(BD Bioscience PharMingen, Oxford, UK) or e-Bioscience (Iceland,

Ireland, UK). Intracellular FACS staining was performed using BD

cytofix/cytoperm kit (Becton Dickinson, Oxford, UK). Anti-IL-4-APC

(11B11), IL-5-APC (TRFK5), IL-13-PE (eBio13A) were from

PharMingen. Goat biotinylated anti-mouse IgG (H 1 L) was from

Southern Biotech. OTII cells were sorted by flow cytometry (MoFlo,

Dako, UK), to purity 495%. Final analysis and graphical output

used FlowJo software (Treestar, Costa Mesa, CA, USA).

In vitro Th2 polarization

CD41 T cells, sorted by flow cytometry from WT and NF-kB1
�/�

mice, were incubated for 5 days in six microwells coated with

anti-CD3 (145-2C11) at 5mg/mL in complete RPMI medium

containing anti-CD28 (37.51) (1 mg/mL), IL-4 (10 ng/mL),

neutralizing anti-IL-12 (C17.8) (5mg/mL) and anti-IFN-g
(X.MG1.2) (5mg/mL). Restimulation was performed with coated

anti-CD3 plus anti-CD28 for 5 h at 37oC. Cytokines were from

PeproTech (PeproTech, London, UK) and antibodies from Insight

Biotech (Insight Biotech, Wembley, UK).
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Immunohistochemical analysis

For in situ study of immune responses 5mm cryostat sections

were taken from snap-frozen LN for immunohistology as

described in [3]. Sections were fixed in acetone at 41C for

20 min and air dried. The staining to reveal IgD, CD3, IgG1,

IgG2a have been described in [1, 2, 7]. OTII cells were revealed

using CD45.2-biotinylated (104) (PharMingen) followed by

streptavidinABComplex-alkaline phosphatase (Dako). Stained

sections were mounted in Glycerol Gelatin (Sigma). The total

numbers of CD31CD45.2� and CD31CD45.21 cells in the follicles

in one section of each LN were enumerated at �250 magnifica-

tion. The area of the follicle o63mm, measured with an eyepiece

graticule, from the outer edge of the CD31-cell-rich T cell zone

was excluded from the counting. This prevents any T zone cells

being counted.

Real-time semi-quantitative RT-PCR

Real-time semi-quantitative RT-PCR was performed as in [18, 19,

22]. TaqMan probes and primers were designed using Primer

Express software (Applied Biosystems) and sequences are

detailed in Supporting Information Table 1.

Statistical analysis

Mann–Whitney two-tailed non-parametric statistics were used;

po0.05 is considered significant and all the p-values are indicated

on the figures.
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